Question

A certain population has a mean of 300 and a (population) standard deviation of 40. If...

A certain population has a mean of 300 and a (population) standard deviation of 40. If a sample of size 200 is taken, what is the probability that the sample average is within plus-or-minus 2 of the population average?

Homework Answers

Answer #1

Solution:

We are given

µ = 300

σ = 40

n = 200

We have to find P(300 - 2 < x̄ < 300+2) = P(298 < x̄ < 302)

P(298 < x̄ < 302) = P(x̄<302) - P(x̄<298)

Find P(x̄<302)

Z = (x̄ - µ)/[σ/sqrt(n)]

Z = (302 - 300)/(40/sqrt(200))

Z = 0.707107

P(Z<0.707107) = P(x̄<302) = 0.76025

(by using z-table)

Now find P(x̄< 298)

Z = (x̄ - µ)/[σ/sqrt(n)]

Z = (298 - 300)/(40/sqrt(200))

Z = -0.707107

P(Z<-0.707107) = P(x̄<298) = 0.23975

(by using z-table)

P(298 < x̄ < 302) = P(x̄<302) - P(x̄<298)

P(298 < x̄ < 302) = 0.76025 - 0.23975

P(298 < x̄ < 302) = 0.5205

Required probability = 0.5205

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population has a mean of 300 and a standard deviation of 80. Suppose a simple...
A population has a mean of 300 and a standard deviation of 80. Suppose a simple random sample of size 100 is selected and is used to estimate ? . 1. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? 2. What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)?
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 100 is selected and x (with a bar over the x) is used to estimate mu. Use z-table. a. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)?
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 8 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 18 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 300 and a standard deviation of 60. Suppose a sample...
A population has a mean of 300 and a standard deviation of 60. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)? (Round...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 8 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)    What is the probability that the sample mean will be within +/- 11 of the population mean (to 4 decimals)? (Round...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table. A. What is the probability that the sample mean will be within +/- 8 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) B. What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?...
A population has a mean of 200 and a standard deviation of 50. Suppose a simple...
A population has a mean of 200 and a standard deviation of 50. Suppose a simple random sample of size ̅ 100 is selected and ? is used to estimate ?. 1. What is the probability that the sample mean will be within ±5 of the population mean? 2. What is the probability that the sample mean will be within ±10 of the population mean?
A population has a mean of 75 and a standard deviation of 32. Suppose a random...
A population has a mean of 75 and a standard deviation of 32. Suppose a random sample size of 80 will be taken. 1. What are the expected value and the standard deviation of the sample mean x ̅? 2. Describe the probability distribution to x ̅. Draw a graph of this probability distribution of x ̅ with its mean and standard deviation. 3. What is the probability that the sample mean is greater than 85? What is the probability...
A population has a mean of 220 and a standard deviation of 120. If a sample...
A population has a mean of 220 and a standard deviation of 120. If a sample of size 6 is taken, what is the probability the sample mean is greater than 291.6? Enter your answer as a decimal to 3 decimal places. A population has a mean of 486 and a standard deviation of 121. If a sample of size 10 is taken, what is the probability the sample mean is greater than 506.4? Enter your answer as a decimal...