Question

A statistician estimates the 92% confidence interval for the mean of a normally distributed population as...

A statistician estimates the 92% confidence interval for the mean of a normally distributed population as (162.75, 173.25) at the end of a sampling experiment assuming a known population standard deviation.

(a) (4 pts) Use the information given to construct the 97% confidence interval for the population mean.

(b) (2 pts) Based on the confidence constructed, is there evidence to conclude the population mean is larger than 161?

Will upvote! Thank you kindly!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n=8. ​1, 2,​ 3, 4, 5, 6, 7 and 16 In the given​ data, replace the value 16 with 8 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using the formula...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 1   3   3   4   5   6   6   8 Sample​ B: 1   2   3   4   5   6   7   8 Construct a 95​% confidence interval for the population mean for sample A. Construct a 95​% confidence interval for the population...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Sample​ A: 11    33    44    44    55    55    66    88 Full data set Sample​ B: 11    22    33    44    55    66    77    88 Construct a 95​% confidence interval for the population mean for sample A. ____ ≤ μ ≤ _____
Assuming that the population is normally​ distributed, construct a 95 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 95 % confidence interval for the population​ mean, based on the following sample size of n equals 5.n=5. 1,2,3,4 and 17 In the given​ data, replace the value 17 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95 % confidence interval for the population​ mean, using the formula or technology.
Assuming that the population is normally​ distributed, construct a 99 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 99 % confidence interval for the population​ mean, based on the following sample size of n equals 5. ​1, 2,​ 3, 4​, and 26 In the given​ data, replace the value 26 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 99 % confidence interval for the population​ mean, using the...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A: 1 4 4 4 5 5 5 8 Sample B: 1 2 3 4 5 6 7 8 a. Construct a 95​% confidence interval for the population mean for sample A. b. Construct a 95​% confidence interval for...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​ mean, based on the following sample size of n equals 6. ​1, 2,​ 3, 4 comma 5​, and 30 In the given​ data, replace the value 30 with 6 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 90 % confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A: 1,3,3,3,6,6,6,8 Sample B: 1,2,3,4,5,6,7,8 Q1. Construct a 99​% confidence interval for the population mean for sample A. ____ <_ u <_ _____ Q2. Construct a 99​% confidence interval for the population mean for sample B. ____ <_ u...
Assuming that the population is normally​ distributed, construct a 99 %99% confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 99 %99% confidence interval for the population​ mean, based on the following sample size of n equals 5.n=5.​1, 2,​ 3, 44​, and 2020 In the given​ data, replace the value 2020 with 55 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 99 %99% confidence interval for the population​ mean, using the formula...
#1.       You are to construct a 99% confidence interval of a normally distributed population; the population...
#1.       You are to construct a 99% confidence interval of a normally distributed population; the population standard deviation is known to be 25. A random sample of size 28 is taken; (i) the sample mean is found to 76 and (ii) the sample standard deviation was found to be 30. Construct the Confidence interval. Clearly name the standard distribution you used (z, or t or F etc.) and show work. (10 points)