Question

Suppose you will do five independent tests of the form H0: μ = 17 vs Ha...

Suppose you will do five independent tests of the form H0: μ = 17 vs Ha : μ ≠ 17 all at the 5% α level. What is the probability of committing a Type 1 error and incorrectly rejecting a true null hypothesis with at least one of the five tests?

a. 0.01

b. 0.049

c. 0.05

d. 0.226

e. 0.7737

Homework Answers

Answer #1

Solution:

given

n = 5, p = 0.05

We have to find P(X≥1)

P(X≥1) = 1 – P(X=0)

P(X=x) = nCx*p^x*q^(n – x)

Where, q = 1 – p = 1 – 0.05 = 0.95

P(X=0) = 5C0*0.05^0*0.95^(5 – 0)

P(X=0) = 1*1*0.95^5

P(X=0) = 0.773781

P(X≥1) = 1 – P(X=0)

P(X≥1) = 1 – 0.773781

P(X≥1) = 0.226219

Correct Answer: 0.226

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You are given the following null and alternative hypotheses: H0: μ = 1.2 HA: μ ≠...
You are given the following null and alternative hypotheses: H0: μ = 1.2 HA: μ ≠ 1.2 α = 0.10 The true population mean is 1.25, the sample size is 60, and the population standard deviation is known to be 0.50. Calculate the probability of committing a Type II error and the power of the test.
a. If for the test of H0: μ = μ h   vs. Ha: μ ≠ μ...
a. If for the test of H0: μ = μ h   vs. Ha: μ ≠ μ h the null hypothesis cannot be rejected at α = .05, then it ______ be rejected at α = .10 for the test of H0: μ = μ h   vs. Ha: μ > μ h. A. might B. must always C. will never ​​​​​​​b. If the 80% confidence interval for μ contains the value μ h, then the P-value for the test of H0:...
For the following hypothesis test, where H0: μ ≤ 10; vs. HA: μ > 10, we...
For the following hypothesis test, where H0: μ ≤ 10; vs. HA: μ > 10, we reject H0 at level of significance α and conclude that the true mean is greater than 10, when the true mean is really 14. Based on this information, we can state that we have: Made a Type I error. Made a Type II error. Made a correct decision. Increased the power of the test.
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 120 and the population standard deviation is 5. Use α = 0.05. If the actual population mean is 9, the probability of a type II error is 0.2912. Suppose the researcher wants to reduce the probability of a type II error to 0.10 when the actual population mean is 10. What sample size is recommended? (Round your answer up to the nearest integer.)
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 120 and the population standard deviation is 9. Use α = 0.05. If the actual population mean is 8, the probability of a type II error is 0.2912. Suppose the researcher wants to reduce the probability of a type II error to 0.10 when the actual population mean is 11. What sample size is recommended? (Round your answer up to the nearest integer.)
1. For testing H0 : µ = 0 vs. Ha : µ > 0, H0 is...
1. For testing H0 : µ = 0 vs. Ha : µ > 0, H0 is rejected if X >¯ 1.645, given n = 36 and σ = 6. What is the value of α, i.e., maximum probability of Type I error? A. 0.90 B. 0.10 C. 0.05 D. 0.01 2. For testing H0 : µ = 0 vs. Ha : µ > 0, H0 is rejected if X >¯ 1.645, given n = 36 and σ = 6. What...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 125 and the population standard deviation is assumed known with σ = 5. Use α = 0.05. (a) If the population mean is 9, what is the probability that the sample mean leads to the conclusion do not reject H0?  (Round your answer to four decimal places.) (b) What type of error would be made if the actual population mean is 9 and we...
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of...
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of 230 items will be taken and the population standard deviation is σ = 10. Use α = 0.05. Compute the probability of making a type II error if the population mean is the following. (Round your answers to four decimal places. If it is not possible to commit a type II error enter NOT POSSIBLE.) (a) μ = 18.0 (b) μ = 22.5 (c)...
Suppose we test H0: μ = 42 versus the alternative Ha: μ ≠ 42.   The p-value...
Suppose we test H0: μ = 42 versus the alternative Ha: μ ≠ 42.   The p-value for this test is 0.03, which is less than 0.05, so the null hypothesis will be rejected. Suppose that after this test, we form a 95% confidence interval for μ. Which of the following intervals is the only possible confidence interval for these data? (Hint: use chapter 13 and the relationship between confidence intervals and hypothesis tests) Question 10 options: (35, 54) (24, 79)...
Suppose we test H0: μ = 42 versus the alternative Ha: μ ≠ 42.   The p-value...
Suppose we test H0: μ = 42 versus the alternative Ha: μ ≠ 42.   The p-value for this test is 0.03, which is less than 0.05, so the null hypothesis will be rejected. Suppose that after this test, we form a 95% confidence interval for μ. Which of the following intervals is the only possible confidence interval for these data? (Hint: use chapter 13 and the relationship between confidence intervals and hypothesis tests) Question 10 options: (35, 54) (24, 79)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT