Question

A random variable X representing the time (in hours) a furnace is running is drawn from...

A random variable X representing the time (in hours) a furnace is running is drawn from Ω = [0, 4] according to the density function f(x) = Cx.

(a) What value must the constant C be in order for f to be a valid probability density function?

(b) Determine the cdf F(x) which gives P(X ≤ x) and use it to determine P(X ≤ 2).

(c) Determine the expected value of X

. (d) Determine E[6X + 1] and Var(6X + 1).

(e) Suppose the energy (in Joules) used by the furnace is a function of the time it is on. In particular, Energy Used = sin(X2 ) (please ignore this as it is not at all realistic).

Set up an integral that represents the expected value of the energy used but do not evaluate the integral.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
f(x)=Cx 1. what value should C be for this to be a valid probability density function...
f(x)=Cx 1. what value should C be for this to be a valid probability density function on the interval [0,4]? 2. what is the Cumulative distribution function f(x) which gives P(X ≤ x) and use it to determine P(X ≤ 2). 3. what is the expected value of X? 4. figure out the value of E[6X+1] and Var(6X+1)
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
1. Let the random variable X denote the time (in hours) required to upgrade a computer...
1. Let the random variable X denote the time (in hours) required to upgrade a computer system. Assume that the probability density function for X is given by: p(x) = Ce^-2x for 0 < x < infinity (and p(x) = 0 otherwise). a) Find the numerical value of C that makes this a valid probability density function. b) Find the probability that it will take at most 45 minutes to upgrade a given system. c) Use the definition of the...
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
let X be a random variable that denotes the life (or time to failure) in hours...
let X be a random variable that denotes the life (or time to failure) in hours of a certain electronic device. Its probability density function is given by f(x){ 0.1 e−0.1x, x > 0 , 0 , elsewhere (a) What is the mean lifetime of this type of device? (b) Find the variance of the lifetime of this device. (c) Find the expected value of X2 − 20X + 100.
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x...
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x > 1, and f(x) = 0, otherwise. a. Find the constant c. b. Calculate E(X) and Var(X). c. Now assume Z1, Z2, Z3, Z4 are independent RVs whose distribution is identical to that of X. Compute E[(Z1 +Z2 +Z3 +Z4)/4] and Var[(Z1 +Z2 +Z3 +Z4)/4]. d. Let Y = 1/X, using the formula to find the pdf of Y.
Let X denote the amount of time a book on two-hour reserve is actually checked out,...
Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is F(x) = 0           x < 0 F(x) = x2/4       0 ≤ x < 2 F(x) = 1           2 ≤ x Use the cdf to obtain the following a) P[ X ≤ 1 ] b) P[ 0.5 ≤ X ≤ 1 ] c) P[ X > 1.5 ] d) Expected value of X, E[X] e) Variance of X, Var[X]
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT