Question

Consider the following hypothesis statement using a = 0.10 and data from two independent samples: H0:μ1...

Consider the following hypothesis statement using a = 0.10 and data from two independent samples:

H0:μ1 – μ2 ≤ 0

H1:μ1 – µ2 > 0

X1 = 86   x2 = 78

Ó1 = 24   Ó2 = 18

N1 = 50   n2 = 55

a) Calculate the appropriate test statistic and interpret the result.

b) Calculate the p-value and interpret the result.

Homework Answers

Answer #1

a)

Test statistics

z = (1 - 2) / sqrt [ 1 / n1 + 2 / n2 ]

= 86 - 78 / sqrt [ 242 / 50 + 182 / 55 ]

= 1.92

This is test statistics value.

Critical value at 0.10 level is 1.645

Since test statistics value > 1.645, we have sufficient evidence to reject null hypothesis.

b)

p-value = P( Z > z)

= P( Z > 1.92)

= 0.0274

Since p-value < 0.10 significance level, we have sufficient evidence to reject null hypothesis.  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following hypothesis statement using α = 0.05 and the following data from two independent...
Consider the following hypothesis statement using α = 0.05 and the following data from two independent samples: H0: p1 - p2 = 0 H1: p1 - p2 ≠ 0 x1 = 18                                    x2 = 24 n1 = 85                                    n2 = 105 Calculate the appropriate t-test statistic and interpret the result. Calculate the p-value and interpret the result.
Consider the following hypothesis statement using alphaαequals=0.10 and the following data from two independent samples. complete...
Consider the following hypothesis statement using alphaαequals=0.10 and the following data from two independent samples. complete the parts below. H0: p1-p2 equal to 0 H1: p1 - p2 not equal to 0 x1= 18  x2= 23 n1= 90  n2=105 1.) what is the test statistic? 2.) what is/are the critical value(s)? 3.) interpret the result. 4,) what is the p value? 5.) interpret the result.
Consider the following hypothesis statement using alphaαequals=0.10 and the following data from two independent samples. complete...
Consider the following hypothesis statement using alphaαequals=0.10 and the following data from two independent samples. complete the parts below. H0: p1-p2 greater than or equal to 0 H1: p1 - p2 less than 0 x1= 46 x2= 59 n1= 125 n2=180 1.) what is the test statistic? 2.) what is/are the critical value(s)? 3.) interpret the result. 4,) what is the p value? 5.) interpret the result.
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population...
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population variances are equal and the populations are normally distributed. Complete parts below. H0: μ1−μ2 = 0 x overbar 1 = 14.8 x overbar 2 = 13.0 H1: μ1−μ2 ≠ 0 s1= 2.8 s2 = 3.2 n1 = 21 n2 = 15 a.) what is the test statistic? b.) the critical values are c.) what is the p value?
Consider the following hypothesis statement using α= 0.10 and data from two independent samples. Assume the...
Consider the following hypothesis statement using α= 0.10 and data from two independent samples. Assume the population variances are equal and the populations are normally distributed. Complete parts a and b. H0: μ1−μ2≤11    x1=66.8 x2=54.3 H1: μ1−μ2>11 s1=19.1    s2=17.7 \ n1=19    n2=21 a. Calculate the appropriate test statistic and interpret the result. The test statistic is . ​(Round to two decimal places as​ needed.) The critical​ value(s) is(are) . ​(Round to two decimal places as needed. Use...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 >...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 > 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 25.7 x2 = 22.8 σ1 = 5.7 σ2 = 6 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 80 n2 = 70 x1 = 104 x2 = 106 σ1 = 8.4 σ2 = 7.5 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.7 s2 = 8.2 (a) What is the value of the test statistic? (Use x1 − x2.  Round your answer to three decimal places.) (b) What is the degrees of...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.6 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.5 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...