Question

At 99% confidence, how large a sample should be taken to obtain a margin of error...

At 99% confidence, how large a sample should be taken to obtain a margin of error of 0.030 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.

Homework Answers

Answer #1

Preliminary estimate for proportion (Not Known) = 0.5
Margin of error =E=0.03
Level of significance =   1-0.99=0.01
Z critical value is (by using Z table) =2.576
Sample size formula is                   


=1843.03                  
                  
Therefore, sample size approximately will be 1844

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 99% confidence, how large a sample should be taken to obtain a margin of error...
At 99% confidence, how large a sample should be taken to obtain a margin of error of .012 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.
At 99% confidence, how large a sample should be taken to obtain a margin of error...
At 99% confidence, how large a sample should be taken to obtain a margin of error of 0.041 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p* . Round up to the next whole number.
At 95% confidence, how large a sample should be taken to obtain a margin of error...
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.026 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.
At 95% confidence, how large a sample should be taken to obtain a margin of error...
At 95% confidence, how large a sample should be taken to obtain a margin of error of .015 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for P* . Round up to the next whole number.
How large a sample should be selected to provide a 95% confidence interval with a margin...
How large a sample should be selected to provide a 95% confidence interval with a margin of error of 4? Assume that the population standard deviation is 30 . Round your answer to next whole number.
4. For a 99% confidence level, how large of a sample size is needed for a...
4. For a 99% confidence level, how large of a sample size is needed for a margin of error of 0.03 for the es-timate of the population proportion? Past studies are not available
In a survey, the planning value for the population proportion is p*=.25 . How large a...
In a survey, the planning value for the population proportion is p*=.25 . How large a sample should be taken to provide a 95% confidence interval with a margin of error of .06? Round your answer to next whole number.
In a survey, the planning value for the population proportion is p* = 0.26. How large...
In a survey, the planning value for the population proportion is p* = 0.26. How large a sample should be taken to provide a 95% confidence interval with a margin of error of 0.05? (Round your answer up to nearest whole number.)
In a survey, the planning value for the population proportion is p* = 0.31. How large...
In a survey, the planning value for the population proportion is p* = 0.31. How large a sample should be taken to provide a 95% confidence interval with a margin of error of 0.05? (Round your answer up to nearest whole number.)
How large a sample should be taken if the population mean is to be estimated with...
How large a sample should be taken if the population mean is to be estimated with 99% confidence to within $75? The population has a standard deviation of $893. (Round your answer up to the next whole number.) You may need to use the appropriate table in Appendix B to answer this question.