Find the 95% confidence limits of the following data set: 202.3 g, 201.5 g, 199.3 g, 201.2 g, 197.8 g, 200.2 g, 195.6 g, and 198.7 g.
variance = 4.8507
standard deviation = 2.2024
standard error = 0.7787
For the below sample
202.3 , 201.5 , 199.3 , 201.2 , 197.8 , 200.2 , 195.6 , 198.7
sample mean=sum of values/total values=1596.6/8=199.575
standard deviation = 2.2024
alpha=0.05
alpha/2=0.05/2=0.025
df=n-1=8-1=7
t crit=T.INV(0.025;7)=2.36462
95% confidence interval for mean=
xbar-t*s/sqrt(n),xbar+t*s/sqrt(n)
=199.575-2.36462*2.2024/sqrt(8),199.575+2.36462*2.2024/sqrt(8)
=197.7337,201.4163
lower limit=197.7337
upper limit=201.4163
we are 95% confident that the true population mean lies in between
197.7337 and 201.4163
Get Answers For Free
Most questions answered within 1 hours.