Let Z have the Standard Normal distribution.
(a) Find z so that the area under the density curve and to the left of z is .4266.
(b) Find z so that the area under the density curve and to the right of z is .8051.
(c) Find the z–scores of the bounds for the middle 37% of area.
(d) Find z so that P(Z < z) = .7416.
(e) Find z so that P(−z < Z < z) = .4573.
(f) Find z so that P(−1.54 < Z < z) = .7895.
Solution
Using standard normal table,
(a)
P(Z < z) = 0.4266
P(Z < -0.185) = 0.4266
z = -0.185
(b)
P(Z > z) = 0.8051
1 - P(Z < z) = 0.8051
P(Z < z) = 1 - 0.8051 = 0.1949
P(Z < -0.86) = 0.1949
z = -0.86
(c)
P(Z < z) = 0.37
P(Z < -0.33) = 0.37
Z -scores are : -0.33 and +0.33
(d)
P(Z < z) = 0.7416
P(Z < 0.65) = 0.7413
z = 0.65
(e)
P(−z < Z < z) = 0.4573
P(-z < Z < z) = 0.4576
P(Z < z) - P(Z < z) = 0.4573
2P(Z < z) - 1 = 0.4573
2P(Z < z) = 1 + 0.4573
2P(Z < z) = 1.4573
P(Z < z) = 1.4573 / 2 = 0.72865
P(Z < 0.61) = 0.72865
z = 0.61
(f)
P(−1.54 < Z < z) = 0.7895
P(Z < z) - P(Z < -1.54) = 0.7895
P(Z < z) = P(Z < -1.54) + 0.7895 = 0.0618 + 0.7895 = 0.8513
P(Z < z) = 0.8513
P(Z < 1.04) = 0.8513
z = 1.04
Get Answers For Free
Most questions answered within 1 hours.