Question

Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....

Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . .

Let the prior distribution for θ be f(θ) = e^−θ for θ > 0.

(a) Show that the posterior distribution is a Gamma distribution. With what parameters?

(b) Find the Bayes’ estimator for θ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find the Bayes estimate under squared error loss. (c) The variance of the data distribution is φ= 3θ2. Find the Bayes estimator (under squared error loss) for φ.Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find...
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) =...
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) = θe^(-xθ); 0 ≤ x > 1; θ > 0, and the prior distribution of θ is Exponential distribution with density π(θ) = (1/β) * e^(-θ/β), where β is a known positive constant. (a) (15pts) Find the posterior distribution of θ. (b) (5pts) Find the Bayes estimator of θ (the Bayes rule estimator with respect to the squared error loss). 1 (c) (10pts) Find the...
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ)...
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ) = θ e- θx      , 0 < x. Find MLE of parameter θ. Is it unbiased estimator? Find unbiased estimator of parameter θ.
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It...
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It has a mean and variance both equal to k. (a) Use the method of moments to find an estimator for k. (b) Use the maximum likelihood method to find an estimator for k. (c) Show that the estimator you got from the first part is an unbiased estimator for k. (d) (5 points) Find an expression for the variance of the estimator you have...
suppose y has a normal distribution with mean = 0 and variance = 1/theta. assume the...
suppose y has a normal distribution with mean = 0 and variance = 1/theta. assume the prior distribution for theta is a gamma distribution with parameters r and lambda. a) what is the posterior distribution for theta? b) find the squared error loss Bayes estimate for theta
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for θ > 2 and x > 1. (a) (10 points) Calculate EX1 and V ar(X1). (b) (5 points) Find the method of moments estimator of θ. (c) (5 points) If we denote the method of moments estimator as ˆθ1. What does √ n( ˆθ1 − θ) converge in distribution to? (d) (5 points) Is the method of moment estimator efficient? Verify your answer.
Consider the Bayes model Xi|θ ,i = 1, 2, . . . , n ∼ iid...
Consider the Bayes model Xi|θ ,i = 1, 2, . . . , n ∼ iid with distribution b(1, θ), 0 < θ < 1 Θ ∼ h(θ) = 1. (a) Obtain the posterior pdf. (b) Assume squared-error loss and obtain the Bayes estimate of θ.
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0,...
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0, θ > 0 a) Derive the expression for E(X). b) Find the method of moment estimator for θ. c) Find the maximum likelihood estimator for θ based on a random sample of size n. Does this estimator differ from that found in part (b)? d) Estimate θ based on the following data: 0.1, 0.3, 0.5, 0.2, 0.3, 0.4, 0.4, 0.3, 0.3, 0.3
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ=...
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ= 3, and suppose that the conditional distribution of Y given X=x, is uniform between 0 and x. (1) Find E(Y) and Var(Y). (2) Find the Moment Generating Function (MGF) of Y. What is the distribution of Y?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT