Question: For the zero order hidden Markov model defined in homework 3 determine the probability of coding state at the last nucleotide of the sequence AGTAG. Use parameters provided in the homework solution (posted in course content). Show all of your work.
HW3 solution:
Zero order Markov model is described by P(i) = ni/N,
where
i = {A,T,G,C},
ni – the number of times nucleotide i occurred in the sequence
N – total number of nucleotides in the sequence (sequence length)
P(A) |
0.20407 |
P(T) |
0.14379 |
P(G) |
0.35439 |
P(C) |
0.29775 |
Original sequence used to get above probabilities:
Sequence1_A2 FASTA format
acgcagtcgcagaccgtgacggtggatcagcaagagattttgaacagggccaacgaggtggaggccccgatggcggacccaccgactgatgtccccatcacaccgtgcgaactcacggcggctaaaaacgccgcccaacagctggtattgtccgccgacaacatgcgggaatacctggcggccggtgccaaagagcggcagcgtctggcgacctcgctgcgcaacgcggccaaggcgtatggcgaggttgatgaggaggctgcgaccgcgctggacaacgacggcgaaggaactgtgcaggcagaatcggccggggccgtcggaggggacagttcggccgaactaaccgatacgccgagggtggccacggccggtgaacccaacttcatggatctcaaagaagcggcaaggaagctcgaaacgggcgaccaaggcgcatcgctcgcgcactttgcggatgggtggaacactttcaacctgacgctgcaaggcgacgtcaagcggttccgggggtttgacaactgggaaggcgatgcggctaccgcttgcgaggcttcgctcgatcaacaacggcaatggatactccacatggccaaattgagcgctgcgatggccaagcaggctcaatatgtcgcgcagctgcacgtgtgggctaggcgggaacatccgacttatgaagacatagtcgggctcgaacggctttacgcggaaaacccttcggcccgcgaccaaattctcccggtgtacgcggagtatcagcagaggtcggagaaggtgctgaccgaatacaacaacaaggcagccctggaaccggtaaacccgccgaagcctccccccgccatcaagatcgacccgcccccgcctccgcaagagcagggattgatccctggcttcctgatgccgccgtctgacggctccggtgtgactcccggtaccgggatgccagccgcaccgatggttccgcctaccggatcgccgggtggtggcctcccggctgacacggcggcgcagctgacgtcggctgggcgggaagccgcagcgctgtcgggcgacgtggcggtcaaagcggcatcgctcggtggcggtggaggcggcggggtgccgtcggcgccgttgggatccgcgatcgggggcgccgaatcggtgcggcccgctggcgctggtgacattgccggcttaggccagggaagggccggcggcggcgccgcgctgggcggcggtggcatgggaatgccgatgggtgccgcgcatcagggacaagggggcgccaagtccaagggttctcagcaggaagacgaggcgctctacaccgaggatcgggcatggaccgaggccgtcattggtaaccgtcggcgccaggacagtaaggagtcgaag
Given:-
The original Sequence beased on the Probabilities are computed
P(I)= ni/N where
i= Nucleotides{ A,T,G,C}
ni= Number of times (i) nucleotide occurs in a sequence
N= total number of nucleotides in the sequence
Probabilities of {A,T,G, C}
P(A) |
0.20407 |
P(T) |
0.14379 |
P(G) |
0.35439 |
P(C) |
0.29775 |
We need to determine the probability of coding of the last squence being AGTAG
P(AGTAG)= P(A) x P(G) x P(T) x P(A) x P(G)
= 0.20407 x 0.35439 x 0.14379 x 0.20407 x 0.35439
= .00075206.
End of Answer
Get Answers For Free
Most questions answered within 1 hours.