People in the aerospace industry believe the cost of a space project is a function of the mass of the major object being sent into space. Use the following data to develop a regression model to predict the cost of a space project by the mass of the space object. Determine r2 and se.
Weight (tons) | Cost ($ millions) |
1.897 | $ 53.6 |
3.019 | 185.0 |
0.453 | 6.4 |
0.980 | 23.5 |
1.058 | 34.1 |
2.100 | 110.4 |
2.377 | 104.6 |
*(Do not round the intermediate values. Round your answers to 4
decimal places.)
**(Round the intermediate values to 4 decimal places. Round your
answer to 3 decimal places.)
ŷ = ( ) * + ( ) * x
r2 = ( ) **
se = ( ) **
Please Fill in the ( ) blanks
Thanks
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Cost ($ millions)
Independent Variable: Weight (tons)
Cost ($ millions) = -35.788407 + 67.961394 Weight (tons)
Sample size: 6
R (correlation coefficient) = 0.98063441
R-sq = 0.96164384
Estimate of error standard deviation: 14.924177
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | -35.788407 | 12.834427 | ≠ 0 | 4 | -2.7884694 | 0.0494 |
Slope | 67.961394 | 6.7864506 | ≠ 0 | 4 | 10.014277 | 0.0006 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 22336.749 | 22336.749 | 100.28574 | 0.0006 |
Error | 4 | 890.92426 | 222.73107 | ||
Total | 5 | 23227.673 |
Hence,
ŷ = -35.7884 + 67.9614 x
r2 = 0.962
se = 14.924
Get Answers For Free
Most questions answered within 1 hours.