Question

If I have a Chi-square random variable (X) and a Erlang random variable (Y) along with...

If I have a Chi-square random variable (X) and a Erlang random variable (Y) along with their respective PDFs. But not their Joint distribution and I don't know if they are independent from each other. How do I find the transformation where Z = X/Y ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variable W = X – 3Y + Z + 2 where X, Y and...
The random variable W = X – 3Y + Z + 2 where X, Y and Z are three independent Normal random variables, with E[X]=E[Y]=E[Z]=2 and Var[X]=9,Var[Y]=1,Var[Z]=3. The pdf of W is: Uniform Poisson Binomial Normal None of the other pdfs.
Suppose that X follows a chi-square distribution with m degrees of freedom and S=X+Y. Given that...
Suppose that X follows a chi-square distribution with m degrees of freedom and S=X+Y. Given that S follows a chi-square distribution with m+n degrees of freedom, and X and Y are independent, show that Y follows a chi-square distribution with n degrees of freedom.
WILL LIKE POST!!!!! 2. A continuous uniform random variable defined between 0 and 12 has a...
WILL LIKE POST!!!!! 2. A continuous uniform random variable defined between 0 and 12 has a variance of: Select one: a. 12 b. 24 c. 144 d. 6 5.A probability plot shows: Select one: a. Percentile values and best fit distribution. b. Percentile values of a proposed distribution and the sample percentages. c. Percentile values of a proposed distribution and the corresponding measurements. d. Sample percentages and percentile values. 7. Consider a joint probability function for discrete random variables X...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} . (a) Find c > 0 . (b) Find μX (c) Find μY (d) Find σ^2 X (e) Find σ^2 Y (f) Find Cov (X, Y ) (g) Find ρ , Corr (X, Y ) (h) Are X...
If a random variable X follows a standard normal model N(0, 1), find the density of...
If a random variable X follows a standard normal model N(0, 1), find the density of X^2 For two independent standard normal random variables X and Y, find the density of X^2+Y^2 For three independent standard normal random variables X, Y and Z, find the density of X^2+Y^2+Z^2 If a random variable X follows a normal N(μ,σ^2), and a random variable Y follows a χ2 (Chi-Square) model with degree of freedom k, assume that X and Y are independent, 4.1)...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and b are constants. (a) Find the distribution of Y . (b) Find the mean and variance of Y . (c) Find a and b so that Y ∼ U(−1, 1). (d) Explain how to find a function (transformation), r(), so that W = r(X) has an exponential distribution with pdf f(w) = e^ −w, w > 0.
the random variable x and y have joint density function given by fx,y={ A(1+x). , 0<=x<=1;0<=y<=3...
the random variable x and y have joint density function given by fx,y={ A(1+x). , 0<=x<=1;0<=y<=3 0 elsewhere 3.1 determine the value of constant A for proper p.d.f ?3.2 find the expected values of X and Y?3.3. obtain the covariance of X and Y?3.4 determine if x and y are statistically independent.
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x!...
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x! y!) for x = 0, 1, 2, … and y = 0, 1, 2, … and zero otherwise a) Find the constant c. b) Find the marginal PMFs of X and Y. Identify their distribution along with their parameters. c) Are X and Y independent? Why/why not?
Q1) The joint probability density function of the random variables X and Y is given by...
Q1) The joint probability density function of the random variables X and Y is given by ??,? (?, ?) = { ?, 0 < ? < ? < 1 0, ??ℎ?????? a) Find the constant ? b) Find the marginal PDFs of X and Y. c) Find the conditional PDF of X given Y, i.e., ?(?|?) d) Find the variance of X given Y, i.e., ???(?|?) e) Are X and Y statistically independent? Explain why.
Let X and Y be independent random variables, with X following uniform distribution in the interval...
Let X and Y be independent random variables, with X following uniform distribution in the interval (0, 1) and Y has an Exp (1) distribution. a) Determine the joint distribution of Z = X + Y and Y. b) Determine the marginal distribution of Z. c) Can we say that Z and Y are independent? Good
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT