Question

Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...

Consider the following results for independent samples taken from two populations.

Sample 1 Sample 2
n1 = 500 n2= 200
p1= 0.45 p2= 0.34

a. What is the point estimate of the difference between the two population proportions (to 2 decimals)?

b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table.
to

c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table.
to

Homework Answers

Answer #1

solution:-
a.point estimate
=> p1 - p2 = 0.45 - 0.34 = 0.11

b.90% confidence for z is 1.645
confidence interval formula
=> (p1 - p2) +/- z * sqrt(p1(1-p1)/n1 + p2(1-p2)/n2)
=> 0.11 +/- 1.645 * sqrt(0.45(1-0.45)/500 + 0.34(1-0.34)/200)
=> 0.11 +/- 0.0661
=> (0.0439 , 0.1761)

c.95% confidence for z is 1.96
confidence interval formula
=> (p1 - p2) +/- z * sqrt(p1(1-p1)/n1 + p2(1-p2)/n2)
=> 0.11 +/- 1.96 * sqrt(0.45(1-0.45)/500 + 0.34(1-0.34)/200)
=> 0.11 +/- 0.0788
=> (0.0312 , 0.1888)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 200 p1= 0.46 p2= 0.31 b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ______ to ________ c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ________ to _________
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 300 p1= 0.43 p2= 0.36 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table....
Consider the following results for independent samples taken from two populations. sample 1 sample 2 n1=500...
Consider the following results for independent samples taken from two populations. sample 1 sample 2 n1=500 n2=200 p1= 0.42 p2= 0.34 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a confidence interval for the difference between the two population proportions (to 4 decimals). (______to _______) c. Develop a confidence interval for the difference between the two population proportions (to 4 decimals). (______to________)
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2 = 300 p1 = 0.53 p2 = 0.36 A. What is the point estimate of the difference between the two population proportions? (Use p1 − p2. ) B. Develop a 90% confidence interval for the difference between the two population proportions. (Use p1 − p2. Round your answer to four decimal places.) to C. Develop a 95% confidence interval for the...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2 = 300 p1 = 0.53 p2 = 0.31 (a) What is the point estimate of the difference between the two population proportions? (Use p1 − p2. ) (b) Develop a 90% confidence interval for the difference between the two population proportions. (Use p1 − p2. Round your answer to four decimal places.)   to   (c) Develop a 95% confidence interval for the...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n 1 = 40 n 2 = 30 x 1 = 13.4 x 2 = 11.9 σ 1 = 2.3 σ 2 = 3.2 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Use z-table. ( , ) Provide a...
{Exercise 10.01 Algorithmic} Consider the following results for two independent random samples taken from two populations....
{Exercise 10.01 Algorithmic} Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n1 = 50 n2 = 30 x1 = 13.1 x2 = 11.2 σ1 = 2.1 σ2 = 3.2 What is the point estimate of the difference between the two population means? Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Provide a 95% confidence interval for the difference between the two population means...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 32.2 x2 = 30.1 s1 = 2.6 s2 = 4.3 (a) What is the point estimate of the difference between the two population means? (b) What is the degrees of freedom for the t distribution? (c) At 95% confidence, what is the margin of error? (d) What is the 95% confidence interval for the difference between...
The following results come from two independent random samples taken of two populations. Sample 1 Sample...
The following results come from two independent random samples taken of two populations. Sample 1 Sample 2 n1 = 60 n2 = 35 x1 = 13.6 x2 = 11.6 σ1 = 2.3 σ2 = 3 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2.) (b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.) to (c)...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.8 x2 = 20.1 s1 = 2.6 s2 = 4.6 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2. ) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin...