Given a Normal distribution with a mean (µ) of 60 and standard deviation (ᵟ) of 8, what is the probability that the sample mean (Xbar) is:
Mean = 60
S.D. = 8
a)
P( X < 57)
Z = (X - μ) / σ
Z = (57 - 60) / 8
Z = -0.375
Feom Z score table
P( X < 57)= P( Z < -0.375)
P( X < 57) = 0.3538
b)
P( 57< X < 62.5)
Z = (X - μ) / σ
Z = (57 - 60) / 8
Z = -0.375
Z= (X - μ) / σ
Z = (62.5 - 60) / 8
Z = 0.3125
Feom Z score table
P( 57< X < 62.5) = P( Z < 0.3125) - P( Z < -0.375)
0.6227-0.3538 = 0.2688
c)
P( X > 65)
Z = (X - μ) / σ
Z = (65 - 60) / 8
Z = 0.625
Feom Z score table
P( X > 65)= P( Z > 0.625)
P( X > 65) = 0.266
d)
P( X > x) =0.38
Z = 0.30548
Z = (X - μ) / σ
0.30548 = (X - 60) / 8
X = 60 + 2.44384
X=62.4438
Get Answers For Free
Most questions answered within 1 hours.