Question

1) Find the critical value z Subscript c necessary to form a confidence interval at the...

1) Find the critical value z Subscript c necessary to form a confidence interval at the level of confidence shown below. cequals0.85

2)Level of Confidence z Subscript c ​90% 1.645 ​95% 1.96 ​99% 2.575 Find the margin of error for the given values of​ c, sigma​, and n. cequals0.95​, sigmaequals2.7​, nequals 81

3)Use the confidence interval to find the estimated margin of error. Then find the sample mean. A biologist reports a confidence interval of left parenthesis 2.1 comma 3.7 right parenthesis when estimating the mean height​ (in centimeters) of a sample of seedlings.

4) You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. From a random sample of 31 business​ days, the mean closing price of a certain stock was ​$121.32. Assume the population standard deviation is ​$10.56.

5)You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. From a random sample of 70 ​dates, the mean record high daily temperature in a certain city has a mean of 85.63degreesF. Assume the population standard deviation is 14.87degreesF.

6)Determine the minimum sample size required when you want to be 99​% confident that the sample mean is within one unit of the population mean and sigmaequals11.1. Assume the population is normally distributed.

7)A cheese processing company wants to estimate the mean cholesterol content of all​ one-ounce servings of a type of cheese. The estimate must be within 0.71 milligram of the population mean. ​(a) Determine the minimum sample size required to construct a 95​% confidence interval for the population mean. Assume the population standard deviation is 3.19 milligrams. ​(b) The sample mean is 33 milligrams. Using the minimum sample size with a 95​% level of​ confidence, does it seem likely that the population mean could be within 3​% of the sample​ mean? within 0.3​% of the sample​ mean? Explain. z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 minus3.4 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 minus3.3 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 minus3.2 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 minus3.1 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 minus3.0 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 minus2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 minus2.8 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 minus2.7 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 minus2.6 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 minus2.5 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 minus2.4 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 minus2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 minus2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 minus2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 minus2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 minus1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 minus1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 minus1.7 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 minus1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 minus1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 minus1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 minus1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 minus1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 minus1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 minus1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 minus0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 minus0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 minus0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 minus0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 minus0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 minus0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 minus0.3 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 minus0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 minus0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 minus0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

Homework Answers

Answer #1

1)

Critical value = +/- 1.44

2)

margin of error for 90%

z value at 90% =1.645

ME = z *(s/sqrt(n))
= 1.645 *(2.7/sqrt(81))
= 0.4935

z value at 95% =1.96

ME = z *(s/sqrt(n))
= 1.96 *(2.7/sqrt(81))
= 0.5880

z value at 99% = 2.576

ME = z *(s/sqrt(n))
= 2.576 *(2.7/sqrt(81))
= 0.7725


4)

z value at 90% = 1.645

CI = mean +/- z *(s/sqrt(n))
= 121.32 +/- 1.645 *(10.56/sqrt(31))
= (118.20,124.44)


z value at 95% = 1.96

CI = mean +/- z *(s/sqrt(n))
= 121.32 +/- 1.96 *(10.56/sqrt(31))
= (117.60,125.04)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1 test for multicollinearity and discuss possible solutions. Regression output confidence interval variables coefficients std. error...
1 test for multicollinearity and discuss possible solutions. Regression output confidence interval variables coefficients std. error    t (df=148) p-value 95% lower 95% upper VIF Intercept 0.6507 X1 0.00000662 0.00000074 8.910 1.73E-15 0.00000515 0.00000809 3.860 X2 0.00041330 0.00023401 1.766 .0794 -0.00004914 0.00087574 1.132 X3 -0.0006 0.00016086 -3.628 .0004 -0.0009 -0.0003 2.930 X4 -0.00030420 0.00002572 -11.829 3.82E-23 -0.00035502 -0.00025338 2.654 X5 0.0550 0.0346 1.587 .1147 -0.0135 0.1234 1.272 X6 -0.0006 0.00040393 -1.493 .1375 -0.0014 0.0002 3.402 2.542 mean VIF
Find the critical value tα to be used for a confidence interval for the mean of...
Find the critical value tα to be used for a confidence interval for the mean of the population in each of the following situations. (a) a 95% confidence interval based on n = 12 observations (b) a 90% confidence interval from an SRS of 22 observations (c) an 80% confidence interval from a sample of size 40
1) Find the critical value t (a/2) needed to construct a confidence interval of the given...
1) Find the critical value t (a/2) needed to construct a confidence interval of the given level with the given sample size. Round the answers to three decimal places a) 98% sample size 11 critical value- b) for level 95% and sample size 25 critical value- c)for level 99% and sample size 14 2) a sample of size n equals 45 has a sample mean X equals 56.9 and sample standard deviation s equals 9.4. construct a 99% confidence interval...
You are an accountant who is performing the annual audit of the accounts at Hookem, Billem,...
You are an accountant who is performing the annual audit of the accounts at Hookem, Billem, and Soakem, a large cellular telephone company. From past experience it is known that 10% of the accounts at Hookem, Billem, and Soakem have errors. Use this Excel file geometric probabilities 2 to assist you with the geometric probability calculations required to answer the questions below. Question 1. What is the probability that the first account with an error is the 6th audited account?...
For a standard normal distribution, determine the following probabilities. a) P(z ) >1.39 b) P(z )...
For a standard normal distribution, determine the following probabilities. a) P(z ) >1.39 b) P(z ) > ?0.46 c) P( z ) ?1.67? ? ?0.68 d) P( z ) ?1.66? ?0.18 Click here to view page 1 of the standard normal probability table. Click here to view page 2 of the standard normal probability table. 3 a) P(z ) (Round to four decimal places as needed.) >1.39 = 0.1056 b) P(z ) (Round to four decimal places as needed.) >...
(1) Find the critical value tc for the confidence level c equals =0. 98 and sample...
(1) Find the critical value tc for the confidence level c equals =0. 98 and sample size n equals = 15 (2) Find the critical value tc for the confidence level c=0.98 and sample size n=7 (3) Construct the indicated confidence interval for the population mean mu using the​ t-distribution. Assume the population is normally distributed. c=0.990. overbar x=12.9 s=4.0 n=55 (4) Construct the indicated confidence interval for the population mean μ using the​ t-distribution. Assume the population is normally...
you are calculating a confidence interval for the population mean. Find the critical value t* from...
you are calculating a confidence interval for the population mean. Find the critical value t* from the t-Distribution Critical Values table for each of the following situations A 95% confidence interval based on n = 12 observations. A 99% confidence interval from a sample of two observations. A 90% confidence interval from a sample of size 1001. 2. Suppose you conduct a hypothesis test for the following hypotheses from a sample of n = 25 observations, and you calculate a...
The force was sampled at 100 kS/s (one hundred thousand samples per second), which corresponds to...
The force was sampled at 100 kS/s (one hundred thousand samples per second), which corresponds to a sampling interval of 0.00001 seconds which is also 0.01 ms. For this exercise, the impact will be considered to be happening whenever the magnitude of the force is at least 0.01 newtons (1 cN). time (s) Force (N) 0 0 0.00001 0 0.00002 0 0.00003 0 0.00004 0 0.00005 0 0.00006 0 0.00007 0 0.00008 0 0.00009 0 0.0001 0 0.00011 0 0.00012...
1)Find the critical value zα/2 needed to construct a(n) 97% confidence interval 2)A college admissions officer...
1)Find the critical value zα/2 needed to construct a(n) 97% confidence interval 2)A college admissions officer takes a simple random sample of 110 entering freshmen and computes their mean mathematics SAT score to be 465. Assume the population standard deviation is Construct a 90% confidence interval for the mean mathematics SAT score for the entering freshmen class. 3) In a small-overlap front crash test, a car is crashed into a simulated telephone pole and the maximum intrusion of debris into...
Problem #1 Confidence Interval for Means using the t and z Distribution.    Psychologists studied the percent...
Problem #1 Confidence Interval for Means using the t and z Distribution.    Psychologists studied the percent tip at a restaurant when a message indicating that the next day’s weather would be nice was written on the bill. Here are tips from a random sample of patrons who received such a bill, measured in percent of the total bill: 20.8     18.7     19.9     20.6     21.9     23.4     22.8     24.9     22.2     20.3   24.9     22.3     27.0     20.4     22.2     24.0     21.1     22.1     22.0     22.7 Open an...