The random variable X is normally distributed. Also, it is known that P(X > 161) = 0.04. [You may find it useful to reference the z table.]
a. Find the population mean μ if the population standard deviation σ = 13. (Round "z" value to 3 decimal places and final answer to 2 decimal places.)
b. Find the population mean μ if the population standard deviation σ = 24. (Round "z" value to 3 decimal places and final answer to 2 decimal places.)
c. Find the population standard deviation σ if the population mean μ = 139. (Round "z" value to 3 decimal places and final answer to 2 decimal places.)
d. Find the population standard deviation σ if the population mean μ = 122. (Round "z" value to 3 decimal places and final answer to 2 decimal places.)
Solution :
x = 161
Using standard normal table,
P(Z > z) = 0.04
1 - P(Z < z) = 0.04
P(Z < z) = 1 - 0.04
P(Z < 1.751) = 0.96
z = 1.751
(a)
standard deviation = = 13
Using z-score formula,
= (x - z * ) = 161 - 1.751 * 13 = 138.24
Population mean = 138.24
(b)
standard deviation = = 24
Using z-score formula,
= (x - z * ) = 161 - 1.751 * 24 = 118.98
Population mean = 118.98
(c)
= 139
= (x - ) / z = (161 - 139) / 1.751 = 12.56
population standard deviation = = 12.56
(d)
= 122
= (x - ) / z = (161 - 122) / 1.751 = 22.27
population standard deviation = = 22.27
Get Answers For Free
Most questions answered within 1 hours.