Question

In order to compare the means of two populations, independent random samples of 282 observations are...

In order to compare the means of two populations, independent random samples of 282 observations are selected from each population, with the following results:

Sample 1 Sample 2
x¯1=3 x¯2=4
s1=110 s2=200


(a)    Use a 97 % confidence interval to estimate the difference between the population means (?1−?2)(μ1−μ2).

_____ ≤(μ1−μ2)≤ ______
(b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using ?=0.03, give the following:

(i)    the test statistic z=

(ii)    the positive critical z score    

(iii)    the negative critical z score    

The final conclusion is

We can reject the null hypothesis (μ1−μ2)=0 in favor of the alternative (μ1−μ2)≠0.
There is not sufficient evidence to reject the null hypothesis (μ1−μ2)=0.

(c)    Test the null hypothesis: H0:(μ1−μ2)=23 versus the alternative hypothesis: Ha:(μ1−μ2)≠23. Using ?=0.03, give the following:

(i)    the test statistic z=

(ii)    the positive critical z score    

(iii)    the negative critical z score    

The final conclusion is

We can reject the null hypothesis (μ1−μ2)=23 in favor of the alternative (μ1−μ2)≠23.
There is not sufficient evidence to reject the null hypothesis (μ1−μ2)=23.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from...
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from populations 1 and 2 produced 388 and 188 successes, respectively. (a) Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.04 test statistic = rejection region |z|> The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.   B. We can reject the null hypothesis that (p1−p2)=0 and support that (p1−p2)≠0. (b) Test H0:(p1−p2)≤0 against Ha:(p1−p2)>0. Use α=0.03 test statistic = rejection...
In order to compare the means of two normal populations, independent random samples are taken of...
In order to compare the means of two normal populations, independent random samples are taken of sizes n1 = 400 and n2 = 400. The results from the sample data yield: Sample 1 Sample 2 sample mean = 5275 sample mean = 5240 s1 = 150 s2 = 200 To test the null hypothesis H0: µ1 - µ2 = 0 versus the alternative hypothesis Ha: µ1 - µ2 > 0 at the 0.01 level of significance, the most accurate statement...
Independent random samples of 42 and 36 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 42 and 36 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 42 36 Sample Mean 1.34 1.29 Sample Variance 0.0510 0.0560 Do the data present sufficient evidence to indicate that the mean for population 1 is larger than the mean for population 2? Perform the hypothesis test for H0: (μ1 − μ2) = 0 versus Ha: (μ1 − μ2) >...
In order to compare the means of populations, independent random samples of 390 observations are selected...
In order to compare the means of populations, independent random samples of 390 observations are selected from each population, with the results found in the table below x1=5283, x2=5242, s1=143, s2=194 Use a​ 95% confidence interval to estimate the difference between the population means (u1-u2) a) find the confidence interval b) Test the null hypothesis Ho: (u1-u2)=0 vs the alternative hypothesis Ha: (u1-u2)=/=0. Use a=0.05. What is the test statistic? What is the p-value? c) Test the null hypothesis Ho:...
A random sample of 140 observations is selected from a binomial population with unknown probability of...
A random sample of 140 observations is selected from a binomial population with unknown probability of success p. The computed value of p^ is 0.71. (1) Test H0:p≤0.65 against Ha:p>0.65. Use α=0.01. test statistic z= critical z score The decision is A. There is sufficient evidence to reject the null hypothesis. B. There is not sufficient evidence to reject the null hypothesis. (2) Test H0:p≥0.5 against Ha:p<0.5. Use α=0.01. test statistic z= critical z score The decision is A. There...
Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations 1 and 2 produced 16 and 10 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.1 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 26 and 15 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)>0 Use α=0.08 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)>0 B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations 1 and 2 produced 73 and 64 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 The P-value is The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2....
Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2. The sample means have been calculated to be x¯1=10.7 and x¯2=8.3. From previous experience with these populations, it is known that the variances are σ21=30 and σ22=23. (a) Determine the rejection region for the test of H0:(μ1−μ2)=2.77 H1:(μ1−μ2)>2.77 using α=0.04. z > __________ (b) Compute the test statistic. z = The final conclusion is A. We can reject H0. B. There is not sufficient...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 42 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0(p1−p2)=0 and accept that (p1−p2)≠0(p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0(p1−p2)=0.