Question

Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...

Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(X < 1, Y < 1). (b) Use the joint pdf to find P(Y > 1). Be careful setting up your limits of integration. (c) Find the marginal pdf of Y , fY (y). Be sure to state the support. (d) Use the marginal pdf of Y to find P(Y > 1). (e) Find E(Y ). (f) Find P(Y < 2X) by integrating in the x direction first. Be careful setting up your limits of integration. (g) Find P(Y < 2X) by integrating in the y direction first. Be extra careful setting up your limits of integration. (h) Find the conditional pdf of X given Y = y, fX|Y =y(x). Be sure to state the support (and the values y that can be conditioned on). (i) Find the expected value of X given Y = y, E(X|Y = y). (Be sure to state the values y that can be conditioned on.) (j) Using your answer from (1h), find the conditional pdf of X given Y = 1, fX|Y =1(x). Be sure to state the support. (k) Using your answer from (1i), find the expected value of X given Y = 1, E(X|Y = 1). (l) Find P(X < Y < √ 2X) by integrating in the x direction first. Be careful setting up your limits of integration. (m) Find E(X/Y ). (n) Find the marginal pdf of X, fX(x). Be sure to state the support. (o) Are X and Y independent? Why?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(Y < 2X) by integrating in the x direction first. Be careful setting up your limits of integration. (b) Find P(Y < 2X) by integrating in the y direction first. Be extra careful setting up your limits of integration. (c) Find the conditional pdf of X given Y = y,...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0...
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0 < x < 1, y > 0, where n is an integer and n > 2. (a) Find the marginal PDF of X and its mean. (b) Find the conditional PDF of Y given X = x. (c) Deduce the conditional mean and the conditional variance of Y given X = x. (d) Find the mean and variance of Y . (e) Find the...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
The continuous random variables X and Y have joint pdf f(x, y) = cy2 + xy/3   0...
The continuous random variables X and Y have joint pdf f(x, y) = cy2 + xy/3   0 ≤ x ≤ 2, 0 ≤ y ≤ 1 (a) What is the value of c that makes this a proper pdf? (b) Find the marginal distribution of X. (c) (4 points) Find the marginal distribution of Y . (d) (3 points) Are X and Y independent? Show your work to support your answer.
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2...
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2 x+y =< 1, x >0, y>0 { 0 otherwise find Cov(X,Y) and ρX,Y
Let continuous random variables X, Y be jointly continuous, with the following joint distribution fXY​(x,y) =...
Let continuous random variables X, Y be jointly continuous, with the following joint distribution fXY​(x,y) = e-x-y ​for x≥0, y≥0 and fXY(x,y) = 0 otherwise​. 1) Sketch the area where fXY​(x,y) is non-zero on x-y plane. 2) Compute the conditional PDF of Y given X=x for each nonnegative x. 3) Use the results above to compute E(Y∣X=x) for each nonnegative x. 4) Use total expectation formula E(E(Y∣X))=E(Y) to find expected value of Y.
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for 0 ≤ y ≤ x ≤ 1. Determine (a) E[X] and Var[X]. (b) E[Y ] and Var[Y ]. (c) Cov(X, Y ). (d) E[X + Y ]. (e) Var[X + Y ].