Question

Rockwell hardness of pins of a certain type is known to have a mean value of...

Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.4. (Round your answers to four decimal places.)

(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 13pins is at least 51?


(b) What is the (approximate) probability that the sample mean hardness for a random sample of 42 pins is at least 51?


You may need to use the appropriate table in the Appendix of Tables to answer this question.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Rockwell hardness of pins of a certain type is known to have a mean value of...
Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.4. (Round your answers to four decimal places.) (a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 18 pins is at least 51? (b) What is the (approximate) probability that the sample mean hardness for a random sample of 45 pins is at least 51?
A certain type of pins have average Rockwell hardness 48 units and standard deviation 1.2 units....
A certain type of pins have average Rockwell hardness 48 units and standard deviation 1.2 units. What is the probability that the sample mean of 40 randomly selected pins will be at most 48.12 units?
A random sample of 12 shearing pins is taken in a study of the Rockwell hardness...
A random sample of 12 shearing pins is taken in a study of the Rockwell hardness of the pin head. Measurements on the Rockwell hardness are made on each of the 12 pins, yielding an average value of 48.50 with a sample standard deviation of 1.5. Let µ be the true mean Rockwell hardness on the pin head. (a) Assuming the measurements to be normally distributed, construct a 90 percent confidence interval for µ. b) Mark as True or False....
The Rockwell hardness of a metal is determined by impressing a hardened point into the surface...
The Rockwell hardness of a metal is determined by impressing a hardened point into the surface of the metal and then measuring the depth of penetration of the point. Suppose the Rockwell hardness of a particular alloy is normally distributed with mean 69 and standard deviation 3. (a) If a specimen is acceptable only if its hardness is between 67 and 73, what is the probability that a randomly chosen specimen has an acceptable hardness? (Round your answer to four...
The Rockwell hardness of a metal is determined by impressing a hardened point into the surface...
The Rockwell hardness of a metal is determined by impressing a hardened point into the surface of the metal and then measuring the depth of penetration of the point. Suppose the Rockwell hardness of a particular alloy is normally distributed with mean 69 and standard deviation 3. (a) If a specimen is acceptable only if its hardness is between 64 and 74, what is the probability that a randomly chosen specimen has an acceptable hardness? (Round your answer to four...
A certain brand of rope is known to have a breaking strength of 520 pounds with...
A certain brand of rope is known to have a breaking strength of 520 pounds with a standard deviation of 18 pounds. Assume the breaking strength has an approximate normal distribution. Consider a random sample of 16 coils of this brand of rope. a. check the appropriate conditions for the sampling distribution of the sample mean (independence, large counts) b. describe the sampling distribution of the sample mean breaking the strength from a random sample of size n=16 coils of...
Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally...
Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.69 and standard deviation 0.84. (a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment density is at most 3.00? Between 2.69 and 3.00? (Round your answers to four decimal places.) at most 3.00     between 2.69 and 3.00     (b) How large a sample size would be required to ensure that the probability...
Use the appropriate normal distribution to approximate the resulting binomial distribution. A basketball player has a...
Use the appropriate normal distribution to approximate the resulting binomial distribution. A basketball player has a 75% chance of making a free throw. (Assume that the throws are independent of each other.) What is the probability of her making 100 or more free throws in 112 trials? (Round your answer to four decimal places.) You may need to use the appropriate table in the Appendix of Tables to answer this question.
Use the appropriate normal distribution to approximate the resulting binomial distribution. A marksman's chance of hitting...
Use the appropriate normal distribution to approximate the resulting binomial distribution. A marksman's chance of hitting a target with each of his shots is 65%. (Assume the shots are independent of each other.) If he fires 40 shots, what is the probability of his hitting the target in each of the following situations? (Round your answers to four decimal places.) (a) at least 29 times (b) fewer than 21 times (c) between 23 and 29 times, inclusive You may need...
A new design for the braking system on a certain type of car has been proposed....
A new design for the braking system on a certain type of car has been proposed. For the current system, the true average braking distance at 40 mph under specified conditions is known to be 120 ft. It is proposed that the new design be implemented only if sample data strongly indicates a reduction in true average braking distance for the new design. (b) Suppose braking distance for the new system is normally distributed with σ = 11. Let X...