Let X ∼ B(5, 0.3). Determine:
(b) P(X < 2);
(c) P(X > 2);
Let X ∼ P0(2.1). Determine:
(a) P(X = 5);
(b) P(X < 3);
(c) P(X ≥ 3);
(d) E(X);
(e) var(X).
since X ∼ B(5, 0.3) , this means X is binomial distribution with parameter n=5 and p=0.3 and
for Binomial distribution ,P(X=r)=nCrpr(1-p)n-r
(b) P(X < 2)=P(X<=1)=0.5282 ( using ms-excel =BINOMDIST(1,5,0.3,1) )
(c) P(X > 2)=1-P(X<=2)=1-0.8369=0.1631
P(X<=2)=0.8369 ( =BINOMDIST(2,5,0.3,1) )
X ∼ P0(2.1), here X is poisson distribution with parameter =2.1 and
for Poisson distribution, P(X=x)=exp(-λ)λ^x/x!
(a) P(X = 5)= 0.0417 ( =POISSON(5,2.1,0))
(b) P(X < 3)=P(X<=2)= 0.6496 ( =POISSON(2,2.1,1))
(c) P(X ≥ 3)=1-P(X<3)=1-P(X<=2)=1-0.6496=0.3504
(d) E(X)==2.1,
(e) var(X)==2.1
for poisson distribution mean and variance are equal and it is equal to =2.1
Get Answers For Free
Most questions answered within 1 hours.