Question

2. Let the probability density function (pdf) of random variable X be given by:

f(x) = C (2x - x²), for 0< x < 2,

f(x) = 0, otherwise

- Find the value of C. (5points)
- Find cumulative probability function F(x) (5points)
- Find P (0 < X < 1), P (1< X < 2), P (2 < X <3) (3points)
- Find the mean, : , and variance, F². (6points)

Answer #1

A continuous random variable X has the following
probability density function F(x) = cx^3, 0<x<2 and 0
otherwise
(a) Find the value c such that f(x) is indeed
a density function.
(b) Write out the cumulative distribution function of
X.
(c) P(1 < X < 3) =?
(d) Write out the mean and variance of X.
(e) Let Y be another continuous random variable such
that when 0 < X < 2, and 0 otherwise. Calculate
the mean of Y.

Let the probability density function of the random variable X be
f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise}
Find the cumulative distribution function (cdf) of X.

Let X be a continuous random variable with probability density
function (pdf) ?(?) = ??^3, 0 < ? < 2.
(a) Find the constant c.
(b) Find the cumulative distribution function (CDF) of X.
(c) Find P(X < 0.5), and P(X > 1.0).
(d) Find E(X), Var(X) and E(X5 ).

2. Let X be a continuous random variable with pdf given by f(x)
= k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise.
(a) Find k.
(b) Find P(2.4 < X < 3.1).
(c) Determine the cumulative distribution function.
(d) Find the expected value of X.
(e) Find the variance of X

Let the probability density of X be given by f(x) = c(4x - 2x^2
), 0 < x < 2; 0, otherwise. a) What is the value of c? b)
What is the cumulative distribution function of X?
c) Find P(X<1|(1/2)<X<(3/2)).

The density function of random variable X is given by f(x) = 1/4
, if 0
Find P(x>2)
Find the expected value of X, E(X).
Find variance of X, Var(X).
Let F(X) be cumulative distribution function of X. Find
F(3/2)

A random variable X takes values between -2 and 4 with
probability density function (pdf)
Sketch a graph of the pdf.
Construct the cumulative density function (cdf).
Using the cdf, find )
Using the pdf, find E(X)
Using the pdf, find the variance of X
Using either the pdf or the cdf, find the median of
X

Let X be the random variable with probability density function
f(x) = 0.5x for 0 ≤ x ≤ 2 and zero otherwise. Find the
mean and standard deviation of the random variable X.

Let X be a random variable with probability density function
f(x) = {3/10x(3-x) if 0<=x<=2
.........{0 otherwise
a) Find the standard deviation of X to four decimal
places.
b) Find the mean of X to four decimal places.
c) Let y=x2 find the probability density function
fy of Y.

Let X be a random variable with the probability density function
fx(x) given by:
fx(x)=
1/4(2-x), 0<x<2
1/4(x-2), 2<=x<4
0, otherwise.
Let Y=|X-3|. Compute the probability density function of Y.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 33 minutes ago

asked 47 minutes ago

asked 51 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago