Using the men’s times as the X column and the women’s times as the Y column, plot all of the ordered pairs on a graph
Men’s 2015 World Championship – Final Results (top 17 finishers)
Rank |
Name |
Nationality |
Time (seconds) |
1 |
Mo Farah |
Great Britain (GBR) |
1621.13 |
2 |
Geoffrey Kipsang |
Kenya (KEN) |
1621.76 |
3 |
Paul Tanui |
Kenya (KEN) |
1622.83 |
4 |
Bedan Karoki |
Kenya (KEN) |
1624.77 |
5 |
Galen Rupp |
United States (USA) |
1628.91 |
6 |
Abrar Osman |
Eritrea (ERI) |
1663.21 |
7 |
Ali Kaya |
Turkey (TUR) |
1663.69 |
8 |
Timothy Toroitich |
Uganda (UGA) |
1664.90 |
9 |
Joshua Kiprui Cheptegei |
Uganda (UGA) |
1668.89 |
10 |
Muktar Edris |
Ethiopia (ETH) |
1674.47 |
11 |
Mosinet Geremew |
Ethiopia (ETH) |
1687.50 |
12 |
El Hassan El-Abbassi |
Bahrain (BHR) |
1692.57 |
13 |
Nguse Tesfaldet |
Eritrea (ERI) |
1694.72 |
14 |
Cameron Levins |
Canada (CAN) |
1695.19 |
15 |
Hassan Mead |
United States (USA) |
1696.30 |
16 |
Shadrack Kipchirchir |
United States (USA) |
1696.30 |
17 |
Arne Gabius |
Germany (GER) |
1704.47 |
Women’s 2015 World Championship – Final Results (top 17 finishers)
Rank |
Name |
Nationality |
Time (seconds) |
1 |
Vivian Cheruiyot |
Kenya (KEN) |
1901.31 |
2 |
Gelete Burka |
Ethiopia (ETH) |
1901.77 |
3 |
Emily Infeld |
United States (USA) |
1903.49 |
4 |
Molly Huddle |
United States (USA) |
1903.58 |
5 |
Sally Kipyego |
Kenya (KEN) |
1904.42 |
6 |
Shalane Flanagan |
United States (USA) |
1906.23 |
7 |
Alemitu Heroye |
Ethiopia (ETH) |
1909.73 |
8 |
Betsy Saina |
Kenya (KEN) |
1911.35 |
9 |
Belaynesh Oljira |
Ethiopia (ETH) |
1913.01 |
10 |
Susan Kuijken |
Netherlands (NED) |
1914.32 |
11 |
Jip Vastenburg |
Netherlands (NED) |
1923.03 |
12 |
Sara Moreira |
Portugal (POR) |
1926.14 |
13 |
Kasumi Nishihara |
Japan (JPN) |
1932.95 |
14 |
Brenda Flores |
Mexico (MEX) |
1935.26 |
15 |
Kate Avery |
Great Britain (GBR) |
1936.19 |
16 |
Trihas Gebre |
Spain (ESP) |
1940.87 |
17 |
Juliet Chekwel |
Uganda (UGA) |
1940.95 |
Consider
X : Men's time and Y : Women's time.
by using R
> x= c(
1621.13,1621.76,1622.83,1624.77,1628.91,1663.21,1663.69,1664.90,1668.89,1674.47,1687.50,1692.57,1694.72,1695.19,1696.30,1696.30,1704.47)
>
y=c(1901.31,1901.77,1903.49,1903.58,1904.42,190.23,1909.73,1911.35,1913.01,1914.32,1923.03,1926.14,1932.95,1935.26,1936.19,1940.87,1940.95)
> length(x)
[1] 17
> length(y)
[1] 17
> d=data.frame("Men's time"=x,"Women's time"=y)
> d
Men.s.time Women.s.time
1 1621.13 1901.31
2 1621.76 1901.77
3 1622.83 1903.49
4 1624.77 1903.58
5 1628.91 1904.42
6 1663.21 190.23
7 1663.69 1909.73
8 1664.90 1911.35
9 1668.89 1913.01
10 1674.47 1914.32
11 1687.50 1923.03
12 1692.57 1926.14
13 1694.72 1932.95
14 1695.19 1935.26
15 1696.30 1936.19
16 1696.30 1940.87
17 1704.47 1940.95
> plot(x,y,xlab="Men's time",ylab="Women's time")
Get Answers For Free
Most questions answered within 1 hours.