Question

Problem 1. This joint pdf appeared in Section 2, Example 8.2.1. Gasoline is to be stocked...

Problem 1. This joint pdf appeared in Section 2, Example 8.2.1. Gasoline is to be stocked in a bulk tank once each

week and then sold to customers. Let X denote the proportion of the tank that is stocked in a particular week, and let

Y denote the proportion of the tank that is sold in the same week. Due to limited supplies, X is not fixed in advance

but varies from week to week. Suppose that a study of many weeks shows the joint relative frequency behavior of X

and Y to be such that the join density function provides and adequate model:

f(x,y)=3x,  0<=y<=x<=1 (<= means less than or equal to)

(e) Compare the marginal expectation of X with the marginal expectation of X when Y=0.4.

(f) Calculate the covariance between X, Y?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0,...
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0, y > 0, x + y ≤ 1 and 0 otherwise. a) Find marginal pdf’s of X and of Y. b) Find covariance Cov(X,Y). c) Find correlation Corr(X,Y). What you can say about the relationship between X and Y?
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <=...
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <= y and x + y <= 2. What is the marginal pdf of X and Y? What is P(Y < 1.1 | X = 0.6)? Are X and Y dependent random variables?
Two balls are drawn in succession without replacement from a bag containing 2 red balls, 1...
Two balls are drawn in succession without replacement from a bag containing 2 red balls, 1 green balls and 3 green balls. Let X and Y denote the number of red and green balls respectively. Find a) f(x,y) the expression for the joint p.d.f of X and Y [5 Marks] b) f(x) the expression for the marginal pdf of X [5 Marks] c) f(y) the expression for the marginal pdf of Y [5 Marks] d) f(y/x), the expression for the...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0...
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0 <= x2 <= 3 (i) What is the distribution of Y = X1 + X2? (ii) What is the distribution of Y = X1 * X2? (iii) Find the expectation E(X1 + X2) (iv) Find the expectation E(X1X2)
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0....
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0. elsewhere What are the marginal pdfs of x1 and x2? Find the expected values of x1 and x2. 3.   What is the expected value of X1X2? (Hint: Define g(X1, X2) = X1X2 and extend the definition of expectation of function of a random variable to two variables as follows: E[g(X1, X2)] = ? ? g(x1, x2)f(x1, x2)dx1dx2. 4. Suppose that Y = X1/X2. What...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(X < 1, Y < 1). (b) Use the joint pdf to find P(Y > 1). Be careful setting up your limits of integration. (c) Find the marginal pdf of Y , fY (y). Be sure to state the support. (d) Use the marginal pdf of Y to find P(Y...