Let X be normally distributed with mean μ = 12 and standard deviation σ = 6. [You may find it useful to reference the z table.]
a. Find P(X ≤ 0). (Round
"z" value to 2 decimal places and final
answer to 4 decimal places.)
b. Find P(X > 3).
(Round "z" value to 2 decimal places and final
answer to 4 decimal places.)
c. Find P(6 ≤ X ≤ 12).
(Round "z" value to 2 decimal places and final
answer to 4 decimal places.)
d. Find P(9 ≤ X
≤ 18). (Round "z" value to 2 decimal
places and final answer to 4 decimal places.)
Solution :
Given that ,
mean = = 12
standard deviation = = 6
a)
P(x 0) = P((x - ) / (0-12) / 6)
= P(z -2.00)
= 0.0228 Using standard normal table
Probability = 0.0228
b)
P(x > 3) = 1 - P(x < 3)
= 1 - P((x - ) / < (3-12) / 6)
= 1 - P(z < -1.50)
= 1 - 0.0668
= 0.9332
Probability = 0.9332
c)
P( 6 x 12 ) = P((6-12 / 6) (x - ) / (12-12 / 6) )
P(6 x 12) = P(-1.00 z 0)
P(6 x 12) = P(z 0 ) - P(z -1.00 )
P(6 x 12) = 0.5000 - 0.1587
Probability = 0.3413
d)
P(9 x 18) = P((9-12 / 6) (x - ) / (18-12 / 6) )
P(9 x 18) = P(-0.50 z 1.00)
P(9 x 18) = P(z 1.00 ) - P(z -0.50)
P(9 x 18) = 0.8413 - 0.3085
Probability = 0.5328
Get Answers For Free
Most questions answered within 1 hours.