The data shown below ($), for a sample of 20 guest bills for Danvers-Hilton resort hotel for a weekend. Assume the population is approximately normal. Develop a 95% confidence interval for the mean guest bills of Danvers-Hilton resort hotel. 1905 2962 2545 2529 2627 2725 2184 2525 2442 2857 2677 2332 2370 2312 2675 2600 3112 2545 2981 2115
: Upper Bound: 2478.35, Lower Bound: 2147.25
Upper Bound: 2758.95, Lower Bound: 2409.98
Upper Bound: 2714.95, Lower Bound: 2387.05
Upper Bound: 2692.02, Lower Bound: 2258.25
Values ( X ) | Σ ( Xi- X̅ )2 | |
1905 | 417316 | |
2962 | 168921 | |
2545 | 36 | |
2529 | 484 | |
2627 | 5776 | |
2725 | 30276 | |
2184 | 134689 | |
2525 | 676 | |
2442 | 11881 | |
2857 | 93636 | |
2677 | 15876 | |
2332 | 47961 | |
2370 | 32761 | |
2312 | 57121 | |
2675 | 15376 | |
2600 | 2401 | |
3112 | 314721 | |
2545 | 36 | |
2981 | 184900 | |
2115 | 190096 | |
Total | 51020 | 1724940 |
Mean X̅ = Σ Xi / n
X̅ = 51020 / 20 = 2551
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1
)
SX = √ ( 1724940 / 20 -1 ) = 301.3077
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 20- 1 ) = 2.093
2551 ± t(0.05/2, 20 -1) * 301.3077/√(20)
Lower Limit = 2551 - t(0.05/2, 20 -1) 301.3077/√(20)
Lower Limit = 2409.9837
Upper Limit = 2551 + t(0.05/2, 20 -1) 301.3077/√(20)
Upper Limit = 2692.0163
95% Confidence interval is ( 2409.98 , 2692.02
)
Get Answers For Free
Most questions answered within 1 hours.