Question

2.X, defined over the range (1, ∞) has pdf given by: f(x) = 2/x3 Calculate E(x),...

2.X, defined over the range (1, ∞) has pdf given by:

f(x) = 2/x3

  1. Calculate E(x), E(x2) and Var(x)
  2. Calculate E(X/5) E[(X/5)2] and Var(X/5)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
suppose that x is a continuos randoms variable with pdf given by f(x) = x3 /...
suppose that x is a continuos randoms variable with pdf given by f(x) = x3 / 4 for 0 less than or equal to x less than or equal to 2. Consider random variables defined by function Y= square root of x 1) what is the support of y? 2) graph y as a function of x 3) give pdf of y 4) what is expected value of y
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1...
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1 + x2 + x3=1 and xi >0 for i = 1,2,3. find the distribution of X1 ? Find E(X1).
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0...
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. (a) Calculate E(X), E(Y ), E(X^2), E(Y^2), E(XY ), Var(X), Var(Y ), Cov(X, Y ). (b) Find the best linear predictor of Y given X. (c) Plot the CEF and BLP as a function of X.
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x...
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x > 1, and f(x) = 0, otherwise. a. Find the constant c. b. Calculate E(X) and Var(X). c. Now assume Z1, Z2, Z3, Z4 are independent RVs whose distribution is identical to that of X. Compute E[(Z1 +Z2 +Z3 +Z4)/4] and Var[(Z1 +Z2 +Z3 +Z4)/4]. d. Let Y = 1/X, using the formula to find the pdf of Y.
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and...
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and 0,                  otherwise 1- Find the probability P(0<X1<1/3 , 0<X2<1/3) 2- For the same joint pdf, calculate E(X1X2) and E(X1 + X2) 3- Calculate Var(X1X2)
The polynomial f(x) given below has 1 as a zero. f(x)=x3−3x2+4x−2?
The polynomial f(x) given below has 1 as a zero. f(x)=x3−3x2+4x−2?
Which functions fit the description? function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1....
Which functions fit the description? function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1. function 3: f(x)= e^3x function 4: f(x)=x^5 -2x^3 -1 a. this function defined over all realnumbers has 3 inflection points b. this function has no global minimum on the interval (0,1) c. this function defined over all real numbers has a global min but no global max d. this function defined over all real numbers is non-decreasing everywhere e. this function (defined over all...
Suppose the pdf of a random variable X is defined as: f(x) = (x/16) + (1/4)...
Suppose the pdf of a random variable X is defined as: f(x) = (x/16) + (1/4) for -4 < x <= 0, and f(x) = -((x^2)/36) + (1/4) Find the cdf of X.
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x =...
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x = 0, 1, 2,..., and 0 < p < 1. This form of the geometric starts at x=0, not at x=1. Given are the following properties: E(X) = (1-p)/p and Var(X) = (1-p)/p^2 A random sample of size n is drawn, the data x1, x2, ..., xn. Likelihood is p = 1/(1+ x̄)) MLE is p̂ = 1/(1 + x̄)) asymptotic distribution is p̂ ~...
f'(–2 )  and (ii) f"(–2 ) , where f(x) = √ 5 – x2 – x3
f'(–2 )  and (ii) f"(–2 ) , where f(x) = √ 5 – x2 – x3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT