Question

To test Ho: p = 0.38 versus H1: p < 0.38, a simple random sample of...

To test Ho: p = 0.38 versus H1: p < 0.38, a simple random sample of n = 1122 individuals is obtained. The researcher decides to test this hypothesis atα = 0.10 level of significance.

Compute the power of the test if the true population proportion is 0.35.

Homework Answers

Answer #1
null Hypothesis:               Ho:   p = 0.380
alternate Hypothesis:    Ha: p < 0.380
std error   se =√(p*(1-p)/n) = sqrt(0.38*0.62/1122) = 0.0145
0.1 level and left tailed test critical value Zα=-1.28
rejection reg:p̂ <=po+Zα*σpo or p̂ <0.38-1.28*0.0145 = 0.3615

for true p=0.35

standard error of pa=√(pa*(1-pa)/n)= 0.0142
Power=P( p̂ <0.3615|p=0.35)=P(Z<(0.3615)/0.0142)=P(Z<0.8)=0.7881
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To test Upper H 0 ​: p equals 0.45 versus Upper H 1 ​: p greater...
To test Upper H 0 ​: p equals 0.45 versus Upper H 1 ​: p greater than 0.45​, a simple random sample of n equals 200 individuals is obtained and x equals 69 successes are observed. ​ (a) What does it mean to make a Type II error for this​test? ​ (b) If the researcher decides to test this hypothesis at the alpha equals 0.01 level of​ significance, compute the probability of making a Type II​ error, beta ​, if...
To test H0: σ=70 versus H1: σ<70​, a random sample of size n equals 25 is...
To test H0: σ=70 versus H1: σ<70​, a random sample of size n equals 25 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s equals = 46.5​, compute the test statistic. ​(b) If the researcher decides to test this hypothesis at α=0.05 level of​ significance, use technology to determine the​ P-value. ​(c) Will the researcher reject the null​ hypothesis? What is the P-Value?
To test H0: μ=100 versus H1: μ≠100, a simple random sample size of n=24 is obtained...
To test H0: μ=100 versus H1: μ≠100, a simple random sample size of n=24 is obtained from a population that is known to be normally distributed. A. If x=105.8 and s=9.3 compute the test statistic. B. If the researcher decides to test this hypothesis at the a=0.01 level of significance, determine the critical values. C. Draw a t-distribution that depicts the critical regions. D. Will the researcher reject the null hypothesis? a. The researcher will reject the null hypothesis since...
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of...
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of size n=25 is obtained from a population that is known to be normally distributed with sigma=6. . The researcher decides to test this hypothesis at the α =0.1 level of significance, determine the critical value. b. The sample mean is determined to be x-bar=42.3, compute the test statistic z=??? c. Draw a normal curve that depicts the critical region and declare if the null...
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample...
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample of size n = 25 is obtained from a normal population with a known σ = 6. My x-BAR mean is 42.3 from my sample. Using a TI 83/84 calculator, calculate my P-value with the appropriate Hypothesis Test.                                   Use a critical level α = 0.10 and decide to Accept or Reject HO with the valid reason for the decision. Group of answer choices My...
In order to test HO: p = 0.59 versus H1: p < 0.59, use n =...
In order to test HO: p = 0.59 versus H1: p < 0.59, use n = 150 and x = 78 as your sample proportion. Using your TI 83/84 calculator device, find the P-value with the appropriate Hypothesis Test Use a critical level α = 0.05 and decide to Accept or Reject HO with the valid reason for the decision.
To test Upper H0: σ=50 versus Upper H 1 : sigma < 50​, a random sample...
To test Upper H0: σ=50 versus Upper H 1 : sigma < 50​, a random sample of size n = 28 is obtained from a population that is known to be normally distributed. (a) If the sample standard deviation is determined to be s = 35.6​, compute the test statistic. (Round to three decimal places as needed.) (b) If the researcher decides to test this hypothesis at the α=0.01 level of​ significance, use technology to determine the ​P-value. The P-value...
To test H0: σ=2.2 versus H1: σ>2.2​, a random sample of size n=15 is obtained from...
To test H0: σ=2.2 versus H1: σ>2.2​, a random sample of size n=15 is obtained from a population that is known to be normally distributed. Complete parts​ (a) through​ (d). (a) If the sample standard deviation is determined to be s=2.3​, compute the test statistic. χ^2_0=____ ​(Round to three decimal places as​ needed.) ​(b) If the researcher decides to test this hypothesis at the α=0.01 level of​ significance, determine the critical value. χ^2_0.01=____ ​(Round to three decimal places as​ needed.)...
To test H0​: μ=50 versus H1​: μ<50​, a simple random sample of size n=26 is obtained...
To test H0​: μ=50 versus H1​: μ<50​, a simple random sample of size n=26 is obtained from a population that is known to be normally distributed. Answer parts​ (a)-(c). ​(a) If x overbar =47.3 and s=13.1​, compute the test statistic. t= _________ ​(Round to two decimal places as​ needed.) (b) Draw a​ t-distribution with the area that represents the​ P-value shaded. Determine whether to use a​ two-tailed, a​ left-tailed, or a​ right-tailed test. c) Approximate the​ P-value.
Test H0: p= 0.76 vs H1: p<0.75 take a random sample of n=49. If you decide...
Test H0: p= 0.76 vs H1: p<0.75 take a random sample of n=49. If you decide to test the hypothesis at a significant level of .05. What is the power of U the test if the true population is 0.71? Show all work please. Thanks