Question

In a certain​ lottery, an urn contains balls numbered 1 to 33. From this​ urn, 4...

In a certain​ lottery, an urn contains balls numbered 1 to 33. From this​ urn, 4 balls are chosen​ randomly, without replacement. For a​ $1 bet, a player chooses one set of four numbers. To​ win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one​ ticket?

Homework Answers

Answer #1

The probability of winning this lottery with one​ ticket = Number of favorable events/ Total number of events

Since the order in which the balls are selected does not matter:

Number of favorable events = Number of permutations of winning set of 4 numbers and is given by:

Total number of events = Number of ways of selecting 4 numbers from 33 numbers and is given by:

So,

The probability of winning this lottery with one​ ticket = 24/40920 = 0.0005865

So,

Answer is:

0.0005865

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a certain state's lottery, 45 balls numbered 1 through 45 are placed in a machine...
In a certain state's lottery, 45 balls numbered 1 through 45 are placed in a machine and seven of them are drawn at random. If the seven numbers drawn match the numbers that a player had chosen, the player wins $1,000,000. In this lottery, the order in which the numbers are drawn does not matter. Compute the probability that you win the million-dollar prize if you purchase a single lottery ticket. Write your answer as a reduced fraction. PP(win) =    ...
In a certain state's lottery, 45 balls numbered 1 through 45 are placed in a machine...
In a certain state's lottery, 45 balls numbered 1 through 45 are placed in a machine and eight of them are drawn at random. If the eight numbers are drawn match the numbers that a player had chosen, the player wins $1,000,000. In this lottery, the order the numbers are drawn in does not matter.
A state lottery randomly chooses 8 balls numbered from 1 through 39 without replacement. You choose...
A state lottery randomly chooses 8 balls numbered from 1 through 39 without replacement. You choose 8 numbers and purchase a lottery ticket. The random variable represents the number of matches on your ticket to the numbers drawn in the lottery. Determine whether this experiment is binomial. If​ so, identify a​ success, specify the values​ n, p, and q and list the possible values of the random variable x.
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from...
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $50 for each red ball drawn and you lose $25 for each green ball drawn. Compute the expected value of your winnings.
In the Powerball® lottery, the player chooses five numbers from a set of 69 numbers without...
In the Powerball® lottery, the player chooses five numbers from a set of 69 numbers without replacement and one “Powerball” number from a set 26 numbers. The five regular numbers are always displayed and read off in ascending order, so order does not matter. A player wins the jackpot if all six of the player’s numbers match the six winning numbers. a. How many different possible ways are there to select the six numbers? b. How many tickets would someone...
1. Consider a 45-ball lottery game. In total there are 45 balls numbered 1 through to...
1. Consider a 45-ball lottery game. In total there are 45 balls numbered 1 through to 45 inclusive. 4 balls are drawn (chosen randomly), one at a time, without replacement (so that a ball cannot be chosen more than once). To win the grand prize, a lottery player must have the same numbers selected as those that are drawn. Order of the numbers is not important so that if a lottery player has chosen the combination 1, 2, 3, 4...
Pennsylvania has a lottery entitled "Big 4". To win, a player must correctly match 4 digits,...
Pennsylvania has a lottery entitled "Big 4". To win, a player must correctly match 4 digits, in order, from a daily lottery in which four digits are selected. Digits are chosen from four separate bins, each containing 10 balls numbered 0-9. The only way to win is to match all 4 digits. If the payoff for a $100 bet is $10000, what is the expected value of winning? Create the probability model for this situation. Based on the model, is...
A lottery is carried out by choosing five balls, without replacement, from a box of 35...
A lottery is carried out by choosing five balls, without replacement, from a box of 35 balls. The lottery ticket has five numbers on it. Find the probability that exactly four of the balls that come out of the box match the numbers on the lottery ticket.
Suppose that a ball is selected at random from an urn with balls numbered from 1...
Suppose that a ball is selected at random from an urn with balls numbered from 1 to 100, and without replacing that ball in the urn, a second ball is selected at random. What is the probability that: 1. The sum of two balls is below five. 2. Both balls have odd numbers. 3. Two consecutive numbers ar chosen, in ascending order
16) We're playing the lottery by drawing 6 balls at random from a drum with 52...
16) We're playing the lottery by drawing 6 balls at random from a drum with 52 uniquely numbered balls, and the balls are drawn from the drum without replacement. What is the probability your numbers will match the 6 winning numbers (order doesn't matter)? 18) How many 8-character passwords can be made with any of the characters on a standard US keyboard? How long might it take to find the password with a brute force method? Please present a complete...