Question

Let each of the independent random variables X1 and X2 have the density function f(x) -...

Let each of the independent random variables X1 and X2 have the density function f(x) - e^-x for 0<x< inf., and f(x) = 0, otherwise. What is the joint density of Y1 = X1 and Y2 = 2X1 + 3X2 and the domain on which this density is positive?

Homework Answers

Answer #1

The joint density of X1 and X2 is,

for x1 > 0, x2 > 0

Given,

Y1 = X1 and Y2 = 2X1 + 3X2

The unique solution of X1 and X2 are,

X1 = Y1 and X2 = (Y2 - 2Y1) /3

The Jacobian is,

The domain on which this density is positive are,

x1 > 0 => y1 > 0

x2 > 0 =>  (y2 - 2y1) /3 > 0 => y2 > 2y1 => y2 / 2 > y1

Thus,

for 0 < y1 < y2/2 <

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞,...
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞, 0< x2<∞. Y1= 2X1 and Y2=X2−X1. I) Find g(y1, y2), the joint pdf of Y1, Y2 Include and draw the support. II) Find g1(y1), the marginal pdf of Y1. III) Find E(Y1).
Let X1 and X2 be two independent geometric random variables with the probability of success 0...
Let X1 and X2 be two independent geometric random variables with the probability of success 0 < p < 1. Find the joint probability mass function of (Y1, Y2) with its support, where Y1 = X1 + X2 and Y2 = X2.
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1).
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤1,...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤1, 0 otherwise. (a) Find the marginal density of X1. (b) Find the marginal density of X2. (c) Are X1 and X2 independent?(why/why not) (d) Find the conditional density of X2 given X1 = x1 (e) Compute Cov(X1,X2)
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10 , otherwise. (a) Find the marginal density of X1. (b) Find the marginal density of X2. (c) Are X1 and X2 independent?(why/why not) (d) Find the conditional density of X2 given X1 = x1 (e) Compute Cov(X1,X2)
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let f(x1, x2) = 1 , 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤...
Let f(x1, x2) = 1 , 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1 be the joint pdf of X1 and X2 . Y1 = X1 + X2 and Y2 = X2 . (a) E(Y1) . (b) Var(Y1) (c) Consider the marginal pdf of Y1 , g(y1) . What is value of g(y1) where y1 = 1/3 and y1 = 6/4 ?
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2 2, x1 −1≤ x2 ≤1−x1, 0≤ x1...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2 2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10 , otherwise. (a) Find the marginal density ofX1. (b) Find the marginal density ofX2. (c) AreX1 andX2 independent?(why/why not) (d) Find the conditional density ofX2 givenX1 = x1 (e) Compute Cov(X1,X2)