Question

In the US, the population mean height for 3-yr-old boys is 38 inches. Suppose a random...

In the US, the population mean height for 3-yr-old boys is 38 inches. Suppose a random sample of 15 non-US 3-yr-old boys showed a sample mean of 37.2 inches with a standard deviation of 3 inches. Assume that the heights are normally distributed in the population. After conducting the hypothesis testing to determine whether the population mean for non-US boys is significantly different from the US population mean, we fail to reject the null hypothesis at 0.05 level.

If you were to construct a 95% confidence interval for the mean, do you expect to contain 38 inches in the interval?

Select one:

a. Not contain.

b. Contain.

Homework Answers

Answer #1

Ans : b. Contain.

( we fail to reject the null hypothesis at 0.05 level. )                                                                                               

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A. If the population mean height for​ 3-year-old boys is 37 inches. Suppose a random sample...
A. If the population mean height for​ 3-year-old boys is 37 inches. Suppose a random sample of 15​ 3-year-old boys from Country B showed a sample mean of 36.1 inches with a standard deviation of 2 inches. The boys were independently sampled. Assume that heights are Normally distributed in the population. a. Determine whether the population mean for Country B boys is significantly different from the Country A mean. Use a significance level of 0.05. Find the test statistic t  =...
In Country A, the population mean height for 3-year-old boys is 39 inches. Suppose a random...
In Country A, the population mean height for 3-year-old boys is 39 inches. Suppose a random sample of 15 3-year-old boys from Country B showed a sample mean of 38.4 inches with a standard deviation of 4 inches. The boys were independently sampled. Assume that heights are Normally distributed in the population. Reject or do not reject Upper H 0 . Choose the correct answer below. A. Reject Upper H 0 . The population mean is definitely not 39 in....
The heights of 11-year old boys in the United States are normally distributed.   A random sample of...
The heights of 11-year old boys in the United States are normally distributed.   A random sample of 9 boys was taken and their mean height (in inches) was 56.67 and their sample standard deviation was 3 inches.  Perform a hypothesis test at the 10% significance level to determine if the mean height of 11-year old boys is more than 54 inches.  Give the hypotheses, test statistic, rejection region, P-value, decision, and interpretation.
1) The mean height of women in a country (ages 20-29) is 64.3 inches. A random...
1) The mean height of women in a country (ages 20-29) is 64.3 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 inches? assume σ = 2.59 The probability that the mean height for the sample is greater than 65 inches is __. 2) Construct the confidence interval for the population mean μ C=0.95 Xbar = 4.2 σ=0.9 n=44 95% confidence...
a sample of 279 one year old baby boys in the US had a mean weight...
a sample of 279 one year old baby boys in the US had a mean weight of 25.9 pounds. assume the population standard deviation is 5.9 pounds. what is the upper bound of the 90% confidence interval for the mean lifetime of the components. round your answer to two decimal places
Assume that the heights of​ 5-year-old females is normally distributed with a population mean height of...
Assume that the heights of​ 5-year-old females is normally distributed with a population mean height of all​ 5-year-old females is 42.2 anda standard deviation of 3.13. What is the mean and the standard deviation of the sample mean of 10​ girls? ​(Round to 4 decimal​ places) Find the probability that the mean height of 10 girls is greater than 45 inches. ​(Round to 4 decimal​ places) Input the StatCrunch output in SHOW YOUR WORK.
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard deviation 2 inches. 1. What is the probability that an 18-year-old man selected at random is between 70 and 72 inches tall? (Round your answer to four decimal places.) ________________ 2. If a random sample of twenty-eight 18-year-old men is selected, what is the probability that the mean height x is between 70 and 72 inches? (Round your answer to four decimal places.) _________________...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard deviation 3 inches. (a) What is the probability that an 18-year-old man selected at random is between 66 and 68 inches tall? (Round your answer to four decimal places.) (b) If a random sample of twenty-five 18-year-old men is selected, what is the probability that the mean height x is between 66 and 68 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard deviation 2 inches. (a) What is the probability that an 18-year-old man selected at random is between 66 and 68 inches tall? (Round your answer to four decimal places.) (b) If a random sample of eleven 18-year-old men is selected, what is the probability that the mean height x is between 66 and 68 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 70 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 70 inches and standard deviation 6 inches. (a) What is the probability that an 18-year-old man selected at random is between 69 and 71 inches tall? (Round your answer to four decimal places.) (b) If a random sample of twenty 18-year-old men is selected, what is the probability that the mean height x is between 69 and 71 inches? (Round your answer to four decimal places.) (c) Compare...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT