Question

Please include the argument in word, thanks Let X ∼ Geom(p). For positive integers n, k...

Please include the argument in word, thanks

Let X Geom(p). For positive integers n, k define

P(X = n + k | X > n) = P(X = n + k) / P(X > n)

.

Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true

for geometric random variables.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P(...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P( x> k-1)- P( X>k) for any positive integer k. assume that for all k>=1 we have P(x>k)=q^k. use (a) to show that x is a geometric random variable.
Let m and n be positive integers and let k be the least common multiple of...
Let m and n be positive integers and let k be the least common multiple of m and n. Show that mZ intersect nZ is equal to kZ. provide justifications please, thank you.
Let X be a discrete random variable with positive integer outputs a show that p (X=...
Let X be a discrete random variable with positive integer outputs a show that p (X= K)= P( X> K-1) - P( X> k) for any positive integer k b Assume that for all k >I we have P (X>k)=q^k  use l() to show that X is a geometric random variable
Let m and n be positive integers and let k be the least common multiple of...
Let m and n be positive integers and let k be the least common multiple of m and n. Show that mZ intersect nZ is equal to kZ. provide justifications pleasw, thank you.
Let n be a positive integer and p and r two real numbers in the interval...
Let n be a positive integer and p and r two real numbers in the interval (0,1). Two random variables X and Y are defined on a the same sample space. All we know about them is that X∼Geom(p) and Y∼Bin(n,r). (In particular, we do not know whether X and Y are independent.) For each expectation below, decide whether it can be calculated with this information, and if it can, give its value (in terms of p, n, and r)....
Let a, b be positive integers and let a = k(a, b), b = h(a, b)....
Let a, b be positive integers and let a = k(a, b), b = h(a, b). Suppose that ab = n^2 show that k and h are perfect squares.
Please include steps. Let x be a binomial random variable with n=4 and p=0.8. Find the...
Please include steps. Let x be a binomial random variable with n=4 and p=0.8. Find the following. P(X = 3) P(X < 4)
Let N denote the set of positive integers, and let x be a number which does...
Let N denote the set of positive integers, and let x be a number which does not belong to N. Give an explicit bijection f : N ∪ x → N.
Let A[1..n] be an array of positive integers (A may not be sorted). Pinocchio claims that...
Let A[1..n] be an array of positive integers (A may not be sorted). Pinocchio claims that there exists an O(n)-time algorithm that decides if there are two integers in A whose sum is 1000. Is Pinocchio right, or will his nose grow? If you say Pinocchio is right, explain how it can be done in O(n) time; otherwise, argue why it is impossible.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT