Refer to the data below. Suppose X is the independent variable and Y is the dependent variable. Calculate the variance of X, variance of Y, standard deviation of X, standard deviation of Y, the covariance between X and Y, the correlation coefficient between X and Y, the slope of the regression line, the Y intercept of the regression, ESS, RSS, TSS, and R-square of the regression line. Predict the value of Y when X=25. Show your work by constructing the 12-colume table.
X |
Y |
2 |
58 |
6 |
105 |
8 |
88 |
8 |
118 |
12 |
117 |
16 |
137 |
20 |
157 |
20 |
169 |
22 |
149 |
26 |
202 |
X | Y | (x-x mean) | (y-y mean) | x-mean)^2 | (y-mean)^2 | (X-x mean)*(y- y mean) | Y-cap = 60+5x | ycap-y-mean | (y cap-y mean)^2 | y-y cap | (y-y cap)^2 | (y-y mean)^2 | |
2 | 58 | -12 | -72 | 144 | 5184 | 864 | 70 | -60 | 3600 | -12 | 144 | 5184 | |
6 | 105 | -8 | -25 | 64 | 625 | 200 | 90 | -40 | 1600 | 15 | 225 | 625 | |
8 | 88 | -6 | -42 | 36 | 1764 | 252 | 100 | -30 | 900 | -12 | 144 | 1764 | |
8 | 118 | -6 | -12 | 36 | 144 | 72 | 100 | -30 | 900 | 18 | 324 | 144 | |
12 | 117 | -2 | -13 | 4 | 169 | 26 | 120 | -10 | 100 | -3 | 9 | 169 | |
16 | 137 | 2 | 7 | 4 | 49 | 14 | 140 | 10 | 100 | -3 | 9 | 49 | |
20 | 157 | 6 | 27 | 36 | 729 | 162 | 160 | 30 | 900 | -3 | 9 | 729 | |
20 | 169 | 6 | 39 | 36 | 1521 | 234 | 160 | 30 | 900 | 9 | 81 | 1521 | |
22 | 149 | 8 | 19 | 64 | 361 | 152 | 170 | 40 | 1600 | -21 | 441 | 361 | |
26 | 202 | 12 | 72 | 144 | 5184 | 864 | 190 | 60 | 3600 | 12 | 144 | 5184 | |
mean= | 14 | 130 | 0 | 0 | 56.8 | 1573 | 284 | 130 | 0 | 1420 | |||
sum= | 140 | 1300 | 0 | 0 | 568 | 15730 | 2840 | 1300 | 0 | 14200 | 0 | 1530 | 15730 |
variance of X = (x-mean)^2 / (n-1) = 568/(10-1)=63.11
variance of Y=(y-mean)^2 / (n-1)=15730/9=1747.778
std dev of X = sqrt [ variance of X] = sqrt 63.11 =7.944
std dev of Y=sqrt [varince of Y] = sqrt 1747.778 = 41.806
Covariance(X,Y) = SUM(xi - xmean)*(yi - ymean)/(samplesize -1)=2840/9=315.5556
correlation coefficient,r= cov (X,Y) / (std dev of X*std dev of Y) = 315.5556/(7.944*41.806) = 0.950
slope = r*std dev of Y / std dev of X = 0.95*41.806/7.944=5
y-intercept = y mean - slope* x-mean = 130-5*14=60
ESS=sum (y cap-y mean)2=14200
RSS=sum(y - y cap)2=1530
TSS=ESS+RSS=14200+1530=15730
R-square = r^2 = 0.950^2 = 0.902734
or
R-square = ESS/TSS = 14200/15730=0.902734
when X=25,
predicted value of y =60+5*X = 60+5*25 = 185
Get Answers For Free
Most questions answered within 1 hours.