Question

Let X denote a random variable with probability density function a. FInd the moment generating function...

Let X denote a random variable with probability density function

a. FInd the moment generating function of X

b If Y = 2^x, find the mean E(Y)

c Show that moments E(X ^n) where n=1,4 is given by:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An exponential density function of random variable ? is given by: ??(?)={???−??(?−?),?>??, ????????? Determine Moment Generating...
An exponential density function of random variable ? is given by: ??(?)={???−??(?−?),?>??, ????????? Determine Moment Generating Function ?(?) (MGF) which is given by ?(?)=?[???]. Use this MGF to examine and find the Variance of ? (Hint: Find 1st and 2nd order moments first).
1. Let the random variable X denote the time (in hours) required to upgrade a computer...
1. Let the random variable X denote the time (in hours) required to upgrade a computer system. Assume that the probability density function for X is given by: p(x) = Ce^-2x for 0 < x < infinity (and p(x) = 0 otherwise). a) Find the numerical value of C that makes this a valid probability density function. b) Find the probability that it will take at most 45 minutes to upgrade a given system. c) Use the definition of the...
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e^−x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
10pts) Let Y be a continuous random variable with density function f(y) = 1 2 e...
10pts) Let Y be a continuous random variable with density function f(y) = 1 2 e −|y| , −∞ < y < ∞ 0, elsewhere (a) Find the moment-generating function of Y . (b) Use the moment-generating function you find in (a) to find the V (Y ).
Consider a discrete random variable X with probability mass function P(X = x) = p(x) =...
Consider a discrete random variable X with probability mass function P(X = x) = p(x) = C/3^x, x = 2, 3, 4, . . . a. Find the value of C. b. Find the moment generating function MX(t). c. Use your answer from a. to find the mean E[X]. d. If Y = 3X + 5, find the moment generating function MY (t).
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0...
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0 otherwise a) Find the standard deviation of X to four decimal places. b) Find the mean of X to four decimal places. c) Let y=x2 find the probability density function fy of Y.
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all...
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all t Find the probability mass function of X. (ii) Let X and Y be two independent continuous random variables with moment generating functions MX(t)=1/sqrt(1-t) and MY(t)=1/(1-t)^3/2, t<1 Calculate E(X+Y)^2
Suppose that the moment generating function of a random variable X is of the form MX...
Suppose that the moment generating function of a random variable X is of the form MX (t) = (0.4e^t + 0.6)8 . What is the moment generating function, MZ(t), of the random variable Z = 2X + 1? (Hint: think of 2X as the sum two independent random variables). Find E[X]. Find E[Z ]. Compute E[X] another way - try to recognize the origin of MX (t) (it is from a well-known distribution)
Y is a continuous random variable with a probability density function f(y)=a+by and 0<y<1. Given E(Y^2)=1/6,...
Y is a continuous random variable with a probability density function f(y)=a+by and 0<y<1. Given E(Y^2)=1/6, Find: i) a and b. ii) the moment generating function of Y. M(t)=?
Find the moment generating function of each of the following random variables. Then, use it to...
Find the moment generating function of each of the following random variables. Then, use it to find the mean and variance of the random variable 1. Y, a discrete random variable with P(X = n) = (1-p)p^n, n >= 0, 0 < p < 1. 2. Z, a discrete random variable with P(Z = -1) = 1/5, P(Z = 0) = 2/5 and P(Z = 2) = 2/5.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT