Question

Suppose that you are testing the hypotheses H0​: μ=12 vs. HA​: μless than<12. A sample of...

Suppose that you are testing the hypotheses H0​: μ=12 vs. HA​: μless than<12. A sample of size 25 results in a sample mean of 12.5 and a sample standard deviation of 1.9. ​a) What is the standard error of the​ mean? ​b) What is the critical value of​ t* for a 90​% confidence​ interval? ​c) Construct a 90​% confidence interval for μ. ​d) Based on the confidence​ interval, at alphaαequals=0.05 can you reject H0​? Explain.

Homework Answers

Answer #1

a)

Standard error of the mean = Standard deviation / sqrt(n)

= 1.9 / sqrt(25)

= 0.38

b)

df = n -1 = 25 - 1 = 24

t critical value at 90% confidence = 1.711

c)

90% confidence interval for is

- t * S / sqrt(n) < < + t * S / sqrt(n)

12.5 - 1.711 * 0.38 < < 12.5 + 1.711 * 0.38

11.85 < < 13.15

90% CI is ( 11.85 , 13.15 )

d)

Since claimed mean 12 contained in confidence interval, we do not have sufficient evidence to reject H0.

We fail to reject the null hypothesis.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that you are testing the hypotheses H0 p=0.21 vs. HA p ?0.21.A sample of size...
Suppose that you are testing the hypotheses H0 p=0.21 vs. HA p ?0.21.A sample of size 300 results in a sample proportion of 0.27. ?a) Construct a 90?% confidence interval for p. ?b) Based on the confidence? interval, can you reject H0 at alpha=0.100?? Explain. ?c) What is the difference between the standard error and standard deviation of the sample? proportion? ?d) Which is used in computing the confidence? interval?
Suppose that you are testing the hypotheses H0​: p=0.22 vs. HA​: p≠0.22. A sample of size...
Suppose that you are testing the hypotheses H0​: p=0.22 vs. HA​: p≠0.22. A sample of size 150 results in a sample proportion of 0.26. ​a) Construct a 95​% confidence interval for p. ​b) Based on the confidence​ interval, can you reject H0at α=0.05​? Explain. ​c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​d) Which is used in computing the confidence​ interval?
Suppose that you are testing the hypotheses H0?: p=0.17 vs. HA?: p?0.17. A sample of size...
Suppose that you are testing the hypotheses H0?: p=0.17 vs. HA?: p?0.17. A sample of size 200 results in a sample proportion of 0.22. ?a) Construct a 99?% confidence interval for p. ?b) Based on the confidence? interval, can you reject H0 at ?=0.01?? Explain. ? c) What is the difference between the standard error and standard deviation of the sample? proportion? ?d) Which is used in computing the confidence? interval?
Suppose that you are testing the hypotheses H0 :p= 0.21 vs HA :p ≠ 0.21 A...
Suppose that you are testing the hypotheses H0 :p= 0.21 vs HA :p ≠ 0.21 A sample size of 150 results in a sample proportion of 0.26   ​a) Construct a 99​% confidence interval for p. ​b) Based on the confidence​ interval, can you reject H0 at a= 0.01? Explain. ​c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​d) Which is used in computing the confidence​ interval?
Suppose that you are testing the hypotheses Upper H 0​: pequals0.21 vs. Upper H Subscript Upper...
Suppose that you are testing the hypotheses Upper H 0​: pequals0.21 vs. Upper H Subscript Upper A​: pnot equals0.21. A sample of size 200 results in a sample proportion of 0.28. ​ a) Construct a 90​% confidence interval for p. ​ b) Based on the confidence​ interval, can you reject Upper H 0 at alphaequals0.10​? Explain. ​ c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​ d) Which is used in computing...
Suppose that you are testing the hypotheses Upper H 0H0​: pequals=0.160.16 vs. Upper H Subscript Upper...
Suppose that you are testing the hypotheses Upper H 0H0​: pequals=0.160.16 vs. Upper H Subscript Upper AHA​: pnot equals≠0.160.16. A sample of size 300300 results in a sample proportion of 0.220.22. ​a) Construct a 9595​% confidence interval for p.​b) Based on the confidence​ interval, can you reject Upper H 0H0 at alphaαequals=0.050.05​? Explain. ​c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​d) Which is used in computing the confidence​ interval? ​a) The...
Suppose that you are testing the hypotheses Upper H 0​: pequals0.25 vs. Upper H Subscript Upper...
Suppose that you are testing the hypotheses Upper H 0​: pequals0.25 vs. Upper H Subscript Upper A​: pnot equals0.25. A sample of size 350 results in a sample proportion of 0.31. ​ a) Construct a 95​% confidence interval for p. ​(Round to three decimal places as​ needed.) b) Based on the confidence​ interval, can you reject Upper H 0 at alphaequals0.05​? Explain. ​c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​ d)...
The p-value for testing a hypothesis of H0: μ=100 Ha: μ≠100 is 0.064 with a sample...
The p-value for testing a hypothesis of H0: μ=100 Ha: μ≠100 is 0.064 with a sample size of n= 50. Using this information, answer the following questions. (a) What decision is made at the α= 0.05 significance level? (b) If the decision in part (a) is in error, what type of error is it? (c) Would a 95% confidence interval forμcontain 100? Explain. (d) Suppose we took a sample of size n= 200 and found the exact same value of...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of 25 provided a sample mean x = 14 and a sample standard deviation s = 4.65. (a) Compute the value of the test statistic. (Round your answer to three decimal places.) (b) Use the t distribution table to compute a range for the p-value. a. p-value > 0.200 b. 0.100 < p-value < 0.200     c. 0.050 < p-value < 0.100 d. 0.025 < p-value...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of 25 provided a sample mean x = 14 and a sample standard deviation s = 4.64. (a) Compute the value of the test statistic. (Round your answer to three decimal places.) (b) Use the t distribution table to compute a range for the p-value. p-value > 0.2000.100 < p-value < 0.200    0.050 < p-value < 0.1000.025 < p-value < 0.0500.010 < p-value < 0.025p-value <...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT