Question

Let X have density fX(x) = C/ sqrt(x), 0 < x < 1 (a) Find the...

Let X have density fX(x) = C/ sqrt(x), 0 < x < 1

(a) Find the cumulative distribution FY (y) and probability density function fY (y) of Y = X(1 − X).

(b) Find probability density function fZ(z) of Z = X1/4 .

SHOW ALL STEPS OF WORKING OUT CLEARLY PLEASE.THANKS!

Homework Answers

Answer #1

a) Please check the question. It is supposed to be X/(1-X) as per my knowledge since here X follows Beta1(1/2, 1). Then Y would follow Beta2(1/2,1)

b) i have assumed the transformation Z=X/4 since there is no X1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of...
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of z : fz (z). hint. figure out which common distribution Z follows and report the rate parameter integral (x+y)e^(-z) dz (x+y)(-e^(-z) + C is my answer 1. ???
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e^−x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
Let X be a random variable with probability density function fX (x) = I (0, 1)...
Let X be a random variable with probability density function fX (x) = I (0, 1) (x). Determine the probability density function of Y = 3X + 1 and the density function of probability of Z = - log (X).
Let fX,Y be the joint density function of the random variables X and Y which is...
Let fX,Y be the joint density function of the random variables X and Y which is equal to fX,Y (x, y) = { x + y if 0 < x, y < 1, 0 otherwise. } Compute the probability density function of X + Y . Referring to the problem above, compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x),...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x), 0<x<2 1/4(x-2), 2<=x<4 0, otherwise. Let Y=|X-3|. Compute the probability density function of Y.
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1,...
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1, 0 otherwise}. a) What is the value of c? b) What is the cumulative distribution function of X? c) Compute E(X) and Var(X).
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4...
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4 − x ^2 ) for |x| ≤ 2 and zero otherwise. Evaluate the constant c, and compute the cumulative distribution function. Let X be the random variable. Compute the following probabilities. a. Prob(X < 1) b. Prob(X > 1/2) c. Prob(X < 1|X > 1/2).
Convolution of distribution integral range 1.Example: Exponential distribution convolution fx+y(z)=intergral from 0 to z fx(x)fy(z-x))dx how...
Convolution of distribution integral range 1.Example: Exponential distribution convolution fx+y(z)=intergral from 0 to z fx(x)fy(z-x))dx how we get the range 0 to z??? Better to use mathematics and a graph to explain. Also, when it ask find the density function X+Y, should I just add two exponential density function together?