Question

The joint probability distribution of X and Y is given by f(x) = { c(x +...

The joint probability distribution of X and Y is given by f(x) = { c(x + y) x = 0, 1, 2, 3; y = 0, 1, 2. 0 otherwise

(1) Find the value of c that makes f(x, y) a valid joint probability density function.

(2) Find P(X > 2; Y < 1).

(3) Find P(X + Y = 4).

Homework Answers

Answer #1

Answer:

Given that:

f(x,y) = c(x+y)

f(x,y) y=0 y=1 y=2
x=0 0 c 2c
x=1 c 2c 3c
x=2 2c 3c 4c
x=3 3c 4c 5c

(1) Find the value of c that makes f(x, y) a valid joint probability density function.

Total probability = 1

(2) Find P(X > 2; Y < 1).

(3) Find P(X + Y = 4).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
2. The joint probability density function of X and Y is given by                               &nbsp
2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}
The joint probability distribution of two random variables X and Y is given in the following...
The joint probability distribution of two random variables X and Y is given in the following table X Y → ↓ 0 1 2 3 f(x) 2 1/12 1/12 1/12 1/12 3 1/12 1/6 1/12 0 4 1/12 1/12 0 1/6 f(y) a) Find the marginal density of X and the marginal density of Y. (add them to the above table) b) Are X and Y independent? c) Compute the P{Y>1| X>2} d) Compute the expected value of X. e)...
The joint probability density function (pdf) of X and Y is given by f(x, y) =...
The joint probability density function (pdf) of X and Y is given by f(x, y) = cx^2 (1 − y), 0 < x ≤ 1, 0 < y ≤ 1, x + y ≤ 1. (a) Find the constant c. (b) Calculate P(X ≤ 0.5). (c) Calculate P(X ≤ Y)
If the joint probability distribution of X and Y is given by: f (x, y) =...
If the joint probability distribution of X and Y is given by: f (x, y) = 3k (x + y), for x = 0, 1, 2, 3; y = 0, 1, 2. a) .- Find the constant k. b) .- Using the table of the joint distribution and the marginal distributions, determine if variable X and variable Y are independent.
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
2. 2. The joint probability density function of X and Y is given by                               &n
2. 2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1} [5+5+5+5 = 20]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT