Question

A sample of n = 4 scores is selected from a normal population with a mean...

A sample of n = 4 scores is selected from a normal population with a mean of µ = 50 and a standard deviation of σ = 20. What is the probability of obtaining a sample mean greater than M = 48?

Homework Answers

Answer #1

µ = 50

sd = 20

n = 4

                         

                          = P(Z > -0.2)

                          = 1 - P(Z < -0.2)

                          = 1 - 0.4207

                          = 0.5793 (ans)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8. A random sample is obtained from a normal population with a mean of µ =...
8. A random sample is obtained from a normal population with a mean of µ = 80 and a standard deviation of σ = 8. Which of the following outcomes is more likely? Explain your answer.           A. A sample mean greater than 86 for a sample of n = 4 scores.           B. A sample mean greater than 84 for a sample of n = 16 scores. 9. The distribution of SAT scores is normal with a mean of...
A random sample is selected from a normal population with a mean of μ = 20...
A random sample is selected from a normal population with a mean of μ = 20 and a standard deviation of σ =5 10. After a treatment is administered to the individuals in the sample, the sample mean is found to be M = 25. If the sample consists of n = 25 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with alpha = .05.
A random sample of n = 25 is selected from a normal population with mean μ...
A random sample of n = 25 is selected from a normal population with mean μ = 101 and standard deviation σ = 13. (a) Find the probability that x exceeds 108. (Round your answer to four decimal places.) (b) Find the probability that the sample mean deviates from the population mean μ = 101 by no more than 3. (Round your answer to four decimal places.)
A random sample of n = 25 is selected from a normal population with mean μ...
A random sample of n = 25 is selected from a normal population with mean μ = 102 and standard deviation σ = 11. (a) Find the probability that x exceeds 107. (Round your answer to four decimal places.) (b) Find the probability that the sample mean deviates from the population mean μ = 102 by no more than 2. (Round your answer to four decimal places.) You may need to use the appropriate appendix table or technology to answer...
A random sample is selected from a normal population with a mean of μ=50 and a...
A random sample is selected from a normal population with a mean of μ=50 and a standard deviation of σ=12. After a treatment is administered to the individuals in the sample, the sample mean is found to be M=55. a. If the sample consists of n=16 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α =0.05. b. If the sample consists of n=36 scores, is the sample mean...
Samples of n = 25 scores are selected from a population. If the distribution of sample...
Samples of n = 25 scores are selected from a population. If the distribution of sample means has an expected value of 50 and a standard error of 2, what are the mean and the standard deviation for the population?
A normal population has a mean of µ = 100. A sample of n = 36...
A normal population has a mean of µ = 100. A sample of n = 36 is selected from the population, and a treatment is administered to the sample. After treatment, the sample mean is computed to be M = 106. Assuming that the population standard deviation is σ = 12, use the data to test whether or not the treatment has a significant effect. Use a one tailed test. Hypothesis:                                        Zcrit = z test calculation:                                                                  Conclusion:
A population of scores forms a normal distribution with a mean of μ = 82 and...
A population of scores forms a normal distribution with a mean of μ = 82 and a standard deviation of σ = 26. (a) What proportion of the scores in the population have values less than X = 86? (Round your answer to four decimal places.) (b) If samples of size n = 15 are selected from the population, what proportion of the samples will have means less than M = 86? (Round your answer to four decimal places.) (c)...
Suppose that we will take a random sample of size n from a population having mean...
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean  : (a) µ = 20, σ = 2, n = 41 (Round your answers of "σ" and "σ2" to 4 decimal places.) µ σ2 σ (b) µ = 502, σ = .7, n = 132 (Round your answers of...
A random sample is selected from a normal population with a mean of µ = 30...
A random sample is selected from a normal population with a mean of µ = 30 and a standard deviation of σ= 8. After a treatment is administered to the individuals in the sample, the sample mean is found to be x̅ =33. Furthermore, if the sample consists of n = 64 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α = .05. 4a. Which of the following...