Consider the following information on the expected return for
companies X and Y.
Economy | Probability | X | Y | ||||||
Boom | 0.15 | 25 | % | 12 | % | ||||
Neutral | 0.56 | 12 | % | 27 | % | ||||
Poor | 0.29 | −27 | % | 7 | % | ||||
a. Calculate the expected value and the standard
deviation of returns for companies X and Y. (Round
intermediate calculations to at least 4 decimal places. Round your
final answers to 2 decimal places.)
Company X | Company Y | |
Expected Value | % | % |
Standard Deviation | % | % |
b. Calculate the correlation coefficient if the
covariance between X and Y is 94. (Round your answer to 4
decimal places.)
x | y | f(x,y) | x*f(x,y) | y*f(x,y) | x^2f(x,y) | y^2f(x,y) |
25 | 12 | 0.15 | 3.75 | 1.8 | 93.75 | 21.6 |
12 | 27 | 0.56 | 6.72 | 15.12 | 80.64 | 408.24 |
-27 | 7 | 0.29 | -7.83 | 2.03 | 211.41 | 14.21 |
Total | 1 | 2.64 | 18.95 | 385.8 | 444.05 | |
E(X)=ΣxP(x,y)= | 2.64 | |||||
E(X2)=Σx2P(x,y)= | 385.8 | |||||
E(Y)=ΣyP(x,y)= | 18.95 | |||||
E(Y2)=Σy2P(x,y)= | 444.05 | |||||
Var(X)=E(X2)-(E(X))2= | 378.8304 | |||||
Var(Y)=E(Y2)-(E(Y))2= | 84.9475 |
a)
Company X | Company Y | |
Expected Value | 2.64 | 18.95 |
Standard Deviation | 19.46 | 9.22 |
b)
correlation coefficient =covariance/(SD(X)*SD(Y))=0.5240
Get Answers For Free
Most questions answered within 1 hours.