Question

A number x is selected at random in the interval [-1, 2]. Let the events A...

A number x is selected at random in the interval [-1, 2]. Let the events A = {x<0} and B = {|x-0.5|<0.5}, and C = {x >0.75} (a) Find the probabilities of A, B, AB and AC. (b) Find the probabilities of AuB, AuC and AuBuC by using the appropriate axioms or corollaries.

Homework Answers

Answer #1

The pdf of X is

(a)

--------------------

Now,

So,

------------------

-----------------------

-------------------------------------

(b)

-------------

-------------------

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A number x is selected at random in the interval [-3,3]. Let the events A={x <...
A number x is selected at random in the interval [-3,3]. Let the events A={x < 0}, B={|x - 0.5| < 0.5|}, and C={x > 0.75}. Find P[A|B], P[B|C],P[A|CC],P[B|CC].
Let X be a randomly selected real number from the interval [0, 1]. Let Y be...
Let X be a randomly selected real number from the interval [0, 1]. Let Y be a randomly selected real number from the interval [X, 1]. a) Find the joint density function for X and Y. b) Find the marginal density for Y. c) Does E(Y) exist? Explain without calculation. Then find E(Y).
Let X be a random number between 0 and 1 produced by a random number generator....
Let X be a random number between 0 and 1 produced by a random number generator. The random number generator will spread its output uniformly (evenly) across the entire interval from 0 to 1. All numbers have an equal probability of being selected. Find the value of aa that makes the following probability statements true. (a)  P(x≤a)=0.8 a= (b)  P(x < a) = 0.25 a= (c)  P(x≥a)=0.17 a= (d)  P(x>a)=0.73 a= (e)  P(0.15≤x≤a)= a=
2. X123456 Suppose that the random variable, X, is a number on the biased die and...
2. X123456 Suppose that the random variable, X, is a number on the biased die and the p.d.f. of X is as shown below;              P(X=x) 1/6 1/6 1/5 k a) Find; (i) the value of k. (ii) E(X) (iii) E(X2) (iv) V ar(X) (v) P(1£X<5) 1/5 1/6        b) If events A and B are such that they are independent, and P(A) = 0.3 with P(B) = 0.5; Find P(A n B) and P(AUB) Are A and B mutually...
Let A1, ... ,20 be independent events each with probability 1/2. Let X be the number...
Let A1, ... ,20 be independent events each with probability 1/2. Let X be the number of events among the first 10 which occur and let Y be the number of events among the last 10 which occur. Find the conditional probability that X = 5, given that X + Y = 12.
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
Let X represent a continuous random variable with a Uniform distribution over the interval from 0...
Let X represent a continuous random variable with a Uniform distribution over the interval from 0 to 2. Find the following probabilities (use 2 decimal places for all answers): (a) P(X ≤ 1.92) = (b) P(X < 1.92) = (c) P(0.22 ≤ X ≤ 1.56) = (d) P(X < 0.22   or   X > 1.56) =
One number is randomly selected from the following set: { 1, 2, 3, 4, 5, 6,...
One number is randomly selected from the following set: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }.         Let          A = event that the selected number is even                       B = event that the selected number is a multiple of 3         Find the following probabilities.           a) P( A and B                                                                                   b) P( A or B )                                                                                                                                   c) P( A   B)                                                                                                                                                 d) Are events A...
Let A and B be independent events of some sample space. Using the definition of independence...
Let A and B be independent events of some sample space. Using the definition of independence P(AB) = P(A)P(B), prove that the following events are also independent: (a) A and Bc (b) Ac and B (c) Ac and Bc
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.