Question

Suppose that the moment generating function of a random variable X is of the form MX...

Suppose that the moment generating function of a random variable X is of the form MX (t) = (0.4e^t + 0.6)8 . What is the moment generating function, MZ(t), of the random variable Z = 2X + 1? (Hint: think of 2X as the sum two independent random variables). Find E[X]. Find E[Z ]. Compute E[X] another way - try to recognize the origin of MX (t) (it is from a well-known distribution)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The moment generating function for the random variable X is MX(t) = (e^t/ (1−t )) if...
The moment generating function for the random variable X is MX(t) = (e^t/ (1−t )) if |t| < 1. Find the variance of X.
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all...
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all t Find the probability mass function of X. (ii) Let X and Y be two independent continuous random variables with moment generating functions MX(t)=1/sqrt(1-t) and MY(t)=1/(1-t)^3/2, t<1 Calculate E(X+Y)^2
The range of a discrete random variable X is {−1, 0, 1}. Let MX (t) be...
The range of a discrete random variable X is {−1, 0, 1}. Let MX (t) be the moment generating function of X, and let MX(1) = MX(2) = 0.5. Find the third moment of X, E(X^3).
The range of a discrete random variable X is {−1, 0, 1}. Let MX(t) be the...
The range of a discrete random variable X is {−1, 0, 1}. Let MX(t) be the moment generating function of X, and let MX(1) = MX(2) = 0.5. Find the third moment of X, E(X^3 )
The random variable X has moment generating function ϕX(t)=exp((9t)^2)/2)+15t) Provide answers to the following to two...
The random variable X has moment generating function ϕX(t)=exp((9t)^2)/2)+15t) Provide answers to the following to two decimal places (a) Evaluate the natural logarithm of the moment generating function of 2X at the point t=0.62. (b) Hence (or otherwise) find the expectation of 2X. c) Evaluate the natural logarithm of the moment generating function of 2X+7 at the point t=0.62.
Suppose that a random variable X  has the following moment generating function, M X (t)  = ...
Suppose that a random variable X  has the following moment generating function, M X (t)  =  (1 − 3t)−8,    t  < 1/3. (a) Find the mean of X (b) Find the Varience of X. Please explain steps. :) Thanks!
Let Mx(t) be a moment generating function. Let Sx (t) = [Mx (t)]2− Mx (t). Prove...
Let Mx(t) be a moment generating function. Let Sx (t) = [Mx (t)]2− Mx (t). Prove that S ′x(0) = µX.
Use the moment generating function Mx(t) to find the mean u and variance o^2. Do not...
Use the moment generating function Mx(t) to find the mean u and variance o^2. Do not find the infinite series. Mx(t) = e^[5*((e^t)-1)]
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t)...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t) Find E(X) using the moment generating function 2. If X1 , X2 , X3  are independent and have means 4, 9, and 3, and variencesn3, 7, and 5. Given that Y = 2X1  -  3X2  + 4X3. find the mean of Y variance of  Y. 3. A safety engineer claims that 2 in 12 automobile accidents are due to driver fatigue. Using the formula for Binomial Distribution find the...
Consider a discrete random variable X with probability mass function P(X = x) = p(x) =...
Consider a discrete random variable X with probability mass function P(X = x) = p(x) = C/3^x, x = 2, 3, 4, . . . a. Find the value of C. b. Find the moment generating function MX(t). c. Use your answer from a. to find the mean E[X]. d. If Y = 3X + 5, find the moment generating function MY (t).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT