Question

A fair die is rolled repeatedly. Find the expected number of rolls until all 6 faces...

A fair die is rolled repeatedly. Find the expected number of rolls until all 6 faces appear.

Homework Answers

Answer #1

Answer:

  • The time until the point when the principal result shows up is 1 after that the arbitrary time until a second (unique) result shows up is geometrically dispersed with parameters of accomplishment 5/6,hence with mean 6/5(recall that the mean of a geometrically disseminated irregular variable is the reverse of its parameters).
  • After that,the irregular time until a third (different)result shows up is geometrically circulated with parameters of achievement 4/6,hence with mean 6/4.And so on,until the irregular time of appearance of the last and 6th result,which is geometrically appropriated with parameters of progress 1/6,hence with mean 6/1 this demonstrates the mean aggregate time to get every one of the six outcomes is

6/k=147/10

=14.7

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A fair die is rolled repeatedly. Find the expected number of rolls until all 6 faces...
A fair die is rolled repeatedly. Find the expected number of rolls until all 6 faces appear.
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A fair die is rolled until the number 6 first appears. Let N be the number...
A fair die is rolled until the number 6 first appears. Let N be the number of rolls, including the last roll. Given that we have rolled at least 4 times, what is the expected number of rolls? This one's killing me
Consider an experiment where a fair die is rolled repeatedly until the first time a 3...
Consider an experiment where a fair die is rolled repeatedly until the first time a 3 is observed. i) What is the sample space for this experiment? What is the probability that the die turns up a 3 after i rolls? ii) What is the expected number of times we roll the die? iii) Let E be the event that the first time a 3 turns up is after an even number of rolls. What set of outcomes belong to...
roll a fair die repeatedly. a) Let X denote the number of rolls until you get...
roll a fair die repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A fair die is rolled repeatedly. Let X be the random variable for the number of...
A fair die is rolled repeatedly. Let X be the random variable for the number of times a fair die is rolled before a six appears. Find E[X].
A fair die is continually rolled until an even number has appeared on 10 distinct rolls....
A fair die is continually rolled until an even number has appeared on 10 distinct rolls. Let Xi denote the number of rolls that land on side i. Determine (a) E[X1] (b) E[X2] (c) the probability mass function of X1 (d) the probability mass function of X2 Same Questions are on Q&A but I want to know why X1 is geometric. I know that geometric distribution means that the number of trials for first success. Thanks
A die is rolled repeatedly until the sum of the numbers obtained islarger than 200. What...
A die is rolled repeatedly until the sum of the numbers obtained islarger than 200. What is the probability that you need more than 66 rolls to do this?Hint: If X is the number of dots showing on the face of a die, E[X] = 7/2 and Var(X)= 35/12.
1) A fair die is rolled 10 times. Find an expression for the probability that at...
1) A fair die is rolled 10 times. Find an expression for the probability that at least 3 rolls of the die end up with 5 dots on top. 2) What is the expected number of dots that show on the top of two fair dice when they are rolled?
A die is continuously rolled until the total sum of all rolls exceeds 375. What is...
A die is continuously rolled until the total sum of all rolls exceeds 375. What is the probability that at least 120 rolls are necessary?