Question

Q1) The joint probability density function of the random variables X and Y is given by...

Q1) The joint probability density function of the random variables X and Y is given by ??,? (?, ?) = { ?, 0 < ? < ? < 1 0, ??ℎ?????? a) Find the constant ? b) Find the marginal PDFs of X and Y. c) Find the conditional PDF of X given Y, i.e., ?(?|?) d) Find the variance of X given Y, i.e., ???(?|?) e) Are X and Y statistically independent? Explain why.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
The joint probability density function of two random variables X and Y is f(x, y) =...
The joint probability density function of two random variables X and Y is f(x, y) = 4xy for 0 < x < 1, 0 < y < 1, and f(x, y) = 0 elsewhere. (i) Find the marginal densities of X and Y . (ii) Find the conditional density of X given Y = y. (iii) Are X and Y independent random variables? (iv) Find E[X], V (X) and covariance between X and Y .
Consider the random variables X and Y with the following joint probability density function: fX,Y (x,...
Consider the random variables X and Y with the following joint probability density function: fX,Y (x, y) = xe-xe-y, x > 0, y > 0 (a) Suppose that U = X + Y and V = Y/X. Express X and Y in terms of U and V . (b) Find the joint PDF of U and V . (c) Find and identify the marginal PDF of U (d) Find the marginal PDF of V (e) Are U and V independent?
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
The joint probability density function (pdf) describing proportions X and Y of two components in a...
The joint probability density function (pdf) describing proportions X and Y of two components in a chemical blend are given by f(x, y) = 2, 0 < y < x ≤ 1. (a) Find the marginal pdfs of X and Y. (b) Find the probability that the combined proportion of these two components is less than 0.5. (c) Find the conditional probability density function of Y given X = x. (d) Find E(Y | X = 0.8).
The joint probability density function of two random variables (X and Y) is given by fX,Y...
The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .