A data set of samples is given below. Use a 0.05 significance level to test the claim that the samples are from a population with a mean that is less than 0.065.
1. Write Ho (null) and H1 (alternative) and indicate which is being tested
2. Describe the statistical test chosen
Data Set
0.066 |
0.059 |
0.058 |
0.058 |
0.076 |
0.082 |
0.053 |
0.053 |
0.072 |
0.076 |
0.066 |
0.084 |
0.05 |
0.051 |
0.068 |
0.065 |
0.084 |
0.078 |
0.082 |
0.056 |
0.066 |
0.081 |
0.08 |
0.053 |
0.068 |
0.06 |
0.077 |
0.062 |
0.055 |
0.05 |
0.052 |
0.07 |
0.051 |
0.059 |
0.052 |
0.058 |
0.065 |
0.058 |
0.074 |
0.071 |
0.083 |
0.062 |
0.063 |
0.084 |
0.077 |
0.056 |
0.073 |
0.085 |
0.082 |
0.065 |
0.071 |
0.076 |
(1) Ho: μ ≥ 0.065 and Ha: μ < 0.065
(2) Left-tailed t- test for a population mean
Data:
n = 52
μ = 0.065
s = 0.011
x-bar = 0.0668
Hypotheses:
Ho: μ ≥ 0.065
Ha: μ < 0.065
Decision Rule:
α = 0.05
Degrees of freedom = 52 - 1 = 51
Critical t- score = -1.675284951
Reject Ho if t < -1.675284951
Test Statistic:
SE = s/√n = 0.011/√52 = 0.001525426
t = (x-bar - μ)/SE = (0.0668 - 0.065)/0.00152542553961938 = 1.179998599
Decision (in terms of the hypotheses):
Since 1.179998599 > -1.675284951 we fail to reject Ho
Conclusion (in terms of the problem):
There is no sufficient evidence that the mean < 0.065
Get Answers For Free
Most questions answered within 1 hours.