Question

1. Suppose a random sample of 100 elements is selected from a non-normally distributed population with...

1. Suppose a random sample of 100 elements is selected from a non-normally distributed
population with a mean of µ = 30 and a standard deviation of σ = 8.
a. What is the expected value of ?̅?
b. What is the standard error of the mean ??̅?
c. What is the sampling distribution of ?̅? Describe its properties.
d. If we select a random sample of size n = 100, what is the probability that ?̅will fall
within ± 1 of µ= 30? That is, what is P(29 ≤ ?̅≤ 31)?
e. If the population size is N = 10,000, what is the standard error of the mean ??̅?
f. If the population size is N = 2,000, what is the standard error of the mean ??̅?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of size n has been selected from a normally distributed population whose standard...
A random sample of size n has been selected from a normally distributed population whose standard deviation is σ. In hypothesis testing for the population mean, the t-test should be used instead of the z-test if: A. n>30 and σ is unknown B. n<30 and σ is known C. both A and B are true D. both A and B are false
True or False? The sampling distribution of the sample mean of a non-normally distributed population will...
True or False? The sampling distribution of the sample mean of a non-normally distributed population will also be normally distributed as long as the sample size is greater than 10. The sampling distribution of the sample mean of a normally distributed population will not be normally distributed if sample size is less than 30.
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar ​, is found to be 106 ​, and the sample standard​ deviation, s, is found to be 10 . ​(a) Construct an 80 ​% confidence interval about mu if the sample​ size, n, is 29 . ​(b) Construct an 80 ​% confidence interval about mu if the sample​ size, n, is 13 . How does decreasing the sample size...
A random sample is drawn from a population having σ = 15. a. If the sample...
A random sample is drawn from a population having σ = 15. a. If the sample size is n = 30 and the sample mean x = 100, what is the 95% confidence interval estimate of the population mean µ? b. If the sample size is n = 120 and the sample mean x = 100, what is the 95% confidence interval estimate of the population mean µ? c. If the sample size is n = 480 and the sample...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 110​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct an 80​% confidence interval about mu if the sample​ size, n, is 29. ​(b) Construct an 80​% confidence interval about mu if the sample​ size, n, is 21. ​(c) Construct a 70​% confidence interval about mu if the sample​ size, n,...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample mean, x bar over x, is found to be 109, and the sample standard deviation, s, is found to be 10. a) Construct a 96% confidence interval about mu if the sample size, n, is 29 lower bound: __ upper bound: __ b) Re-do, but with a different interval. Construct a 95% confidence interval about mu if sample size n, is 29...
A random sample is selected from a population with mean μ = 100 and standard deviation...
A random sample is selected from a population with mean μ = 100 and standard deviation σ = 10. Determine the mean and standard deviation of the x sampling distribution for each of the following sample sizes. (Round the answers to three decimal places.) (a) n = 8 μ = σ = (b) n = 14 μ = σ = (c) n = 34 μ = σ = (d) n = 55 μ = σ = (f) n = 110...
A simple random sample of size n=40 is obtained from a population with μ = 50...
A simple random sample of size n=40 is obtained from a population with μ = 50 a n d σ = 4. Does the population distribution need to be normally distributed for the sampling distribution of x ¯ to be approximately normally distributed? Why or why not? What is the mean and standard deviation of the sampling distribution?
A simple random sample of size 11 is drawn from a normal population whose standard deviation...
A simple random sample of size 11 is drawn from a normal population whose standard deviation is σ=1.8. The sample mean is ¯x=26.8. a.) Construct a 85% confidence level for μ. (Round answers to two decimal place.) margin of error: lower limit: upper limit: b.) If the population were not normally distributed, what conditions would need to be met? (Select all that apply.) the population needs to be uniformly distributed σ is unknown simple random sample large enough sample size...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample mean, x ̅, is found to be 108, and the sample standard deviation, s, is found to be 10. Construct a 99% confidence interval for μ if the sample size n is 30.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT