Question

Consider a random variable X such that: ??(?) =|?| / 2? ??? ? ∈ {−2, −1,...

Consider a random variable X such that:
??(?) =|?| / 2? ??? ? ∈ {−2, −1, 1, 2},
??(?) = 0 ??? ? ∉ {−2, −1, 1, 2},
Where ? > 0 is a real parameter.
a) Find a.
b) What is the PMF of the random variable ? =?^2+1/??
Guidance: ? is a function of ? (? = ?(?)). Write P(? = ?) in terms of
P(? = ?) such that ? = ?(?). You can make use of the proof to the
law of the unconscious statistician from the tutorial class.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A. (i) Consider the random variable X with pmf: pX (−1) = pX (1) = 1/8,...
A. (i) Consider the random variable X with pmf: pX (−1) = pX (1) = 1/8, pX (0) = 3/4. Show that the Chebyshev inequality P (|X − μ| ≥ 2σ) ≤ 1/4 is actually an equation for this random variable. (ii) Find the pmf of a different random variable Y that also takes the values {−1, 0, 1} for which the Chebyshev inequality P (|X − μ| ≥ 3σ) ≤ 1/9 is actually an equation.
A Poisson random variable is a variable X that takes on the integer values 0 ,...
A Poisson random variable is a variable X that takes on the integer values 0 , 1 , 2 , … with a probability mass function given by p ( i ) = P { X = i } = e − λ λ i i ! for i = 0 , 1 , 2 … , where the parameter λ > 0 . A)Show that ∑ i p ( i ) = 1. B) Show that the Poisson random...
1. Suppose a random variable X has a pmf 
p(x) = 3^(x-1)/4^x , x = 1,2,......
1. Suppose a random variable X has a pmf 
p(x) = 3^(x-1)/4^x , x = 1,2,... (a) Find the moment generating function of X. 
 (b) Give a realistic example of an experiment that this random variable can be defined from its sample space. 
 (c) Find the mean and variance of X.
5. Consider the random variable X with the following distribution function for a > 0, β...
5. Consider the random variable X with the following distribution function for a > 0, β > 0: FX (z) = 0 for z ≤ 0 ​= 1 – exp [–(z/a)β] for z > 0 (where exp y = ey) (a) Determine the inverse function of FX (z), where 0 < z < 1. (b) Let a = β = 2 for the random variable X, and define the numbers u1 = .33 and u2 = .9. Use the inverse...
1. There is a 5-digit binary number. Random variable X is defined as the number of...
1. There is a 5-digit binary number. Random variable X is defined as the number of 0's in the binary number. (a) Draw the probability mass function (PMF) for X. (b) Draw the cumulative distribution function (CDF) for X. (c) Using the PMF, find the probability that the 5-digit binary number has at most three 0’s. (d) Using the CDF, find the probability that the 5-digit binary number has at most three 0’s. 2. Now, referring to the PMF that...
Consider the family of distributions with pmf pX(x) = p if x = −1, 2p if...
Consider the family of distributions with pmf pX(x) = p if x = −1, 2p if x = 0, 1 − 3p if x = 1 . Here p is an unknown parameter, and 0 ≤ p ≤ 1/3. Let X1, X2, . . . , Xn be iid with common pmf a member of this family. Consider the statistics A = the number of i with Xi = −1, B = the number of i with Xi = 0,...
let the discrete random variable, x, have the following probability mass function f(x)= c|x-2|, x=-2,-1,0,1,2,3 a....
let the discrete random variable, x, have the following probability mass function f(x)= c|x-2|, x=-2,-1,0,1,2,3 a. find the constant such that fx is a valid pmf b. find P(|X-1|>1) c. find the expected value of X d. find the expected value of X^2
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x <...
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x < 1), where C > 0 and 1(·) is the indicator function. (a) Find the value of the constant C such that fX is a valid pdf. (b) Find P(1/2 ≤ X < 1). (c) Find P(X ≤ 1/2). (d) Find P(X = 1/2). (e) Find P(1 ≤ X ≤ 2). (f) Find EX.
Consider two random variable X and Y with joint PMF given in the table below. Y...
Consider two random variable X and Y with joint PMF given in the table below. Y = 2 Y = 4 Y = 5 X = 1 k/3 k/6 k/6 X = 2 2k/3 k/3 k/2 X = 3 k k/2 k/3 a) Find the value of k so that this is a valid PMF. Show your work. b) Re-write the table with the joint probabilities using the value of k that you found in (a). c) Find the marginal...
A random variable X has its probability function given by x 0 1 2 3 4...
A random variable X has its probability function given by x 0 1 2 3 4 f(x) 0.3c 0.1c c 0.2c 0.4c a) Find c and F(x), the cumulative distribution function for X (for all real values of X). b) Find the probabilities of the event X = 6 and the event X >= 4. c) Find P(1 < X <= 4) and P(1 < X <= 4 | X <= 3).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT