Question

Thirty-eight percent of all Americans drink bottled water more than once a week (Natural resources Defense...

Thirty-eight percent of all Americans drink bottled water more than once a week (Natural resources Defense Council, December 4, 2015). Suppose you have been hired by the Natural Resources Defence Council to investigate bottled water consumption in St. Paul. You plan to select a sample of St. Paulites to estimate the proportion who drink bottled water more than once a week. Assume the population proportion of St. Paulites who drink bottled water more than once a week is , the same as the overall proportion of Americans who drink bottled water more than once a week. Use z-table.

a. Suppose you select a sample of 540 St.Paulites. Show the sampling distribution of p (to 4 decimals).

  

  

b. Based upon a sample of 540 St. Paulites, what is the probability that the sample proportion will be within 0.05 of the population proportion (to 4 decimals).

probability   

c. Suppose you select a sample of 240 St.Paulites. Show the sampling distribution of p (to 4 decimals).

  

  

d. Based upon a smaller sample of only 240 St. Paulites, what is the probability that the sample proportion will be within .05 of the population proportion (to 4 decimals).

probability   

e. As measured by the increase in probability, how much do you gain in precision by taking the larger sample in parts (a) and (b) rather than the smaller sample in parts (c) and (d)?

Reduced by _______ ?

Homework Answers

Answer #1

P values can be taken from Excel ,

=Norm.s.dist(z, cumulative)

= Norm.s.dist(-2.39,1) = 0.9916

=Norm.s.dist(2.39,1) =0.0084

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Thirty-seven percent of all Americans drink bottled water more than once a week (Natural resources Defense...
Thirty-seven percent of all Americans drink bottled water more than once a week (Natural resources Defense Council, December 4, 2015). Suppose you have been hired by the Natural Resources Defence Council to investigate bottled water consumption in St. Paul. You plan to select a sample of St. Paulites to estimate the proportion who drink bottled water more than once a week. Assume the popluation proportion of St. Paulites who drink bottled water more than once a week is 0.37, the...
A debate rages whether or not bottled water is worth the cost. The National Resource Defense...
A debate rages whether or not bottled water is worth the cost. The National Resource Defense Council concludes, “there is no assurance that bottled water it is any cleaner or safer than tap (water).” But, in addition to the safety issue, many people prefer the taste of bottled water to tap water, or so they say! Let’s suppose that the city council members of Corvallis are trying to show that the city of Corvallis tap water tastes just as good...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 900 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 0.0130 What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)? What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. A) Calculate the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). I got .0153 B) What is the probability that the sample proportion will be within +/- 0.03 of the population...