Question

1) The quality control manager of a large candy factory considers the production process to be...

1) The quality control manager of a large candy factory considers the production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9%. The control officer states that this is only a sample deviation and that the production line is not really out of control. At the 0.01 level of significance, test the control manager's claim.

Find the Ho, Ha, Test Statistic, alpha, P-value or critical value, give a conclusion, and a statement that identifies a type I error and a type II error. Make sure to show all steps!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A manufacturer considers his production process to be out of control when defects exceed 3%. In...
A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and production is not really out of control. At the 0.01 level of significance, test the manager's claim. what type of hypothesis test is this? a. test about the mean when sigma is known b. one sample proportion test c. independent two...
A manufacturer considers his production process to be out of control when defects exceed 3%. In...
A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 185 items, the defect rate is 5.9%. The manager claims that this is due only to the sample fluctuation (random sampling variation) and that the process is not really out of control. a. Test his claim at the 0.01 level of significance. Use both the RR and P-Value (Methods). b. Assume that in fact the proportion of defects really is...
A manufacturer considers his production process to be out of control when defects exceed 3%. In...
A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 185 items, the defect rate is 5.9%. The manager claims that this is due only to the sample fluctuation (random sampling variation) and that the process is not really out of control. a. Test his claim at the 0.01 level of significance. Use both the RR and P-Value (Methods). b. Assume that in fact the proportion of defects really is...
Question 3 A manufacturer considers his production process to be out of control when defects exceed...
Question 3 A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and production is not really out of control. At the 0.01 level of significance, test the manager's claim. (a) State the null and alternative hypotheses for the test. [3 marks] (b) Calculate the value of the test statistic for this...
Perform a hypothesis test for the population proportion A manufacturer considers his production process to be...
Perform a hypothesis test for the population proportion A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and that production is not really out of control. At the 0.01 level of significance, do the data provide sufficient evidence that the percentage of defects exceeds 3%?
a manufacturer considers his production process to be out of control when defects exceed 5%. in...
a manufacturer considers his production process to be out of control when defects exceed 5%. in a random sample of 67 items the defect rate is 5.4% but the manager claims that this is only a sample fluctuation and production is not really out of control. at the 7% level of significance use the o value method to test the manager's claim.
Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final...
Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and production is not really out of control. At the 0.01 level of significance, test the manager's claim.
A manufacturer considers his production process to be out of control when defects exceed 3%. In...
A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 85 items, the defect rate is 5.9% but the manager claims that this is only a sample fluctuation and the production is not really out of control . At the 0.01 level of significance, test the managers claim.   HINTS: 1.57, 0.0582, 2.33 A) Step 1: What is the claim? Be careful, this is a tricky question; but the claim is...
The quality control manager at a light-bulb factory needs to estimate the mean life of a...
The quality control manager at a light-bulb factory needs to estimate the mean life of a new type of light-bulb. The population standard deviation is assumed to be 65 hours. A random sample of 40 light-bulbs shows a sample mean life of 505 hours. Construct and explain a 95% confidence interval estimate of the population mean life of the new light-bulb. what size sample would be needed to achieve a margin of error of 15 hours or less?
The quality control manager at a light-bulb factory needs to estimate the mean life of a...
The quality control manager at a light-bulb factory needs to estimate the mean life of a new type of light-bulb. The population standard deviation is assumed to be 50 hours. A random sample of 35 light-bulbs shows a sample mean life of 490 hours. Construct and explain a 90% confidence interval estimate of the population mean life of the new light-bulb. What size sample would be needed to achieve a margin of error of 15 hours or less? Show all...