Question

If the joint density of X and Y was uniform on the region 0 < x...

If the joint density of X and Y was uniform on the region 0 < x < 1 and 0 < y < 2 − 2x, find the probability P(2X − Y < 0).

Homework Answers

Answer #1

The joint PDF is

Where is the area of the triangular region

Consider the figure below.

The area of the triangular region is .

Thus, the joint PDF is

The area of the shaded region (in rose) is  .

Thus the required probability is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If f(x,y) = k is a joint probability density function over the region 0<x<4, 0<y, and...
If f(x,y) = k is a joint probability density function over the region 0<x<4, 0<y, and x-1<y<x+1, what is the value of f(x)?
The joint density function of (X, Y ) is f(x, y) = c(x + y), 0...
The joint density function of (X, Y ) is f(x, y) = c(x + y), 0 ≤ y ≤ x ≤ 1. (1) Find c. (2) Find the conditional density f(y|x). (3) Find P(Y > 0.3|X = 0.5).
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density...
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density function of X and Y . a) What is the value of c? a) 1   b) 2 c) 1/2 d) 2/3 e) 3/2 b)what is the marginal probability density function of X? a) x/2 b)1 c)1/x d)x e)2x c)what is the marginal probability density function of Y ? a) ln y   b)−ln y c)1 d)y e)y2 d)what is E[X]? a)1 b)2 c)4 d)1/2 e)1/4
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤...
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 otherwise, where c is a positive constant. Compute the marginal densities of X and of Y (be explicit about all cases!). Compute P(Y + 2X < 1). Determine whether X and Y are independent. Justify your answer.
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1....
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1. [0 elsewhere] a) Obtain the probability density function of the v.a Z, where Z = X^2. b) Obtain the probability density function of v.a W, where W = X*Y^2. c) Obtain the joint density function of Z and W, that is, g (Z, W)
The joint probability density function (pdf) of X and Y is given by f(x, y) =...
The joint probability density function (pdf) of X and Y is given by f(x, y) = cx^2 (1 − y), 0 < x ≤ 1, 0 < y ≤ 1, x + y ≤ 1. (a) Find the constant c. (b) Calculate P(X ≤ 0.5). (c) Calculate P(X ≤ Y)
The joint probability density function of X and Y is bivariate normal with E(X)=E(Y)=0, sd(x)=sd(y)=9, and...
The joint probability density function of X and Y is bivariate normal with E(X)=E(Y)=0, sd(x)=sd(y)=9, and correlation coefficient is 0. Find: (a) P(X=<6, Y=<12); (b) P(X^2+Y^2=<36)
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
For X and Y with the initial joint density of f(x,y)= (3/2)(2−2x−y), 0<x<1and0<y<2−2x, findP(Y <1|X=1/2).
For X and Y with the initial joint density of f(x,y)= (3/2)(2−2x−y), 0<x<1and0<y<2−2x, findP(Y <1|X=1/2).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT