Question

Suppose the selling price of homes in the United States is skewed right with a mean...

  1. Suppose the selling price of homes in the United States is skewed right with a mean of $350,000 and a standard deviation of $160,000.
  1. (4 pts) If we record the selling price of 40 randomly selected U.S. homes, what will be the shape of the distribution of sample means? What will be the mean of this distribution? What will be the standard deviation of this distribution? Indicate how you arrived at your conclusions.
  1. (6 pts) What is the probability that in a random sample of 40 U.S. homes, the mean selling price is greater than $400,000?

Homework Answers

Answer #1

a)This is a normal distribution question with

\\Mean (\mu)= 350000 \\Standard\;Deviation (\sigma)= 160000 Sample size (n) = 40

Shape of the distribution of sample means is symmetric

Since we know that

b)

P(x > 400000.0)=?

The z-score at x = 400000.0 is,

z = 1.9764

This implies that

P(x > 400000.0) = P(z > 1.9764) = 1 - 0.9759452542188739

PS: you have to refer z score table to find the final probabilities.

Please hit thumps up if the answer helped you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1 (1 point) A population is slightly skewed to the right, has a mean of...
Question 1 (1 point) A population is slightly skewed to the right, has a mean of 75 and a standard deviation of 7. If a random sample of 28 items are selected from this population, then the mean score of these 28 items is from a sampling distribution that has a mean of ... Your Answer: Question 1 options: Answer Question 2 (1 point) A population is slightly skewed to the left, has a mean of 71 and a standard...
Suppose students' ages follow a skewed right distribution with a mean of 24 years old and...
Suppose students' ages follow a skewed right distribution with a mean of 24 years old and a standard deviation of 5 years. If we randomly sample 250 students, which of the following statements about the sampling distribution of the sample mean age is incorrect? The shape of the sampling distribution is approximately normal. The mean of the sampling distribution is approximately 24 years old. The standard deviation of the sampling distribution is equal to 5 years. All of the above...
If a random sample of 24 homes south of a town has a mean selling price...
If a random sample of 24 homes south of a town has a mean selling price of $145,500 and a standard deviation of $4500, and a random sample of 21 homes north of a town has a mean selling price of $148,725 and a standard deviation of $5975, can you conclude that there is a significant difference between the selling price of homes in these two areas of the town at the 0.05 level? Assume normality. (a) Find t. (Round...
If a random sample of 23 homes south of a town has a mean selling price...
If a random sample of 23 homes south of a town has a mean selling price of $144,925 and a standard deviation of $4575, and a random sample of 17 homes north of a town has a mean selling price of $148,475 and a standard deviation of $5950, can you conclude that there is a significant difference between the selling price of homes in these two areas of the town at the 0.05 level? Assume normality. (a) Find t. (Round...
kIf a random sample of 20 homes south of a town has a mean selling price...
kIf a random sample of 20 homes south of a town has a mean selling price of $145,075 and a standard deviation of $4850, and a random sample of 24 homes north of a town has a mean selling price of $148,300 and a standard deviation of $5750, can you conclude that there is a significant difference between the selling price of homes in these two areas of the town at the 0.05 level? Assume normality. (a) Find t. (Round...
The distribution of college students’ commute time is skewed to the right with the mean 20...
The distribution of college students’ commute time is skewed to the right with the mean 20 minutes and the standard deviation 30 minutes. 1. Let X¯ be the sample mean commute time of a random sample of 9 students. What are (i) the mean and (ii) variance of X¯? (iii) Is the distribution of X¯ normal? (iv) Why or why not? 2. Let X¯ 100 be the sample mean commute time of a random sample of 100 students. What is...
Home prices in a certain community have a distribution that is skewed right. The mean of...
Home prices in a certain community have a distribution that is skewed right. The mean of the home prices is $498,000 with a standard deviation of $25,200. a. Suppose we take a random sample of 30 homes in this community. What is the probability that the mean of this sample is between $500,000 and $510,000? b. Suppose we take a random sample of 10 homes in this community. Can we find the approximate probability that the mean of the sample...
Home prices in a certain community have a distribution that is skewed right. The mean of...
Home prices in a certain community have a distribution that is skewed right. The mean of the home prices is $498,000 with a standard deviation of $25,200. a. Suppose we take a random sample of 30 homes in this community. What is the probability that the mean of this sample is between $500,000 and $510,000? b. Suppose we take a random sample of 10 homes in this community. Can we find the approximate probability that the mean of the sample...
Suppose students ageas follow a skewed right distribution with a mean of 25 years old and...
Suppose students ageas follow a skewed right distribution with a mean of 25 years old and a standard deviation of 15 years. consider the random sample of 100 students. Determine the probability that the sample mean student age is greater than 22 years?
According to Humane Society data, 39% of households in the United States have at least one...
According to Humane Society data, 39% of households in the United States have at least one dog. In the United Kingdom, 23% of households have at least one dog. Suppose you select an SRS of 75 households in the U.S. and 80 households in the U.K., and calculate p1= the proportion of households in the U.S. sample that have a dog, and p2= the proportion of households in the U.K. sample that have a dog. Which of the following best...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT