Calculate the t-test statistic for whether the correlation coefficient between the two variables below differs significantly from 0. (Hint: You will first need to calculate the correlation coefficient.)
5 6
4 3
3 2
5 6
6 8
7 9
8 11
9 9
1 4
14 13
S.No | X | Y | (x-x̅)2 | (y-y̅)2 | (x-x̅)(y-y̅) |
1 | 5 | 6 | 1.4400 | 1.2100 | 1.3200 |
2 | 4 | 3 | 4.8400 | 16.8100 | 9.0200 |
3 | 3 | 2 | 10.2400 | 26.0100 | 16.3200 |
4 | 5 | 6 | 1.4400 | 1.2100 | 1.3200 |
5 | 6 | 8 | 0.0400 | 0.8100 | -0.1800 |
6 | 7 | 9 | 0.6400 | 3.6100 | 1.5200 |
7 | 8 | 11 | 3.2400 | 15.2100 | 7.0200 |
8 | 9 | 9 | 7.8400 | 3.6100 | 5.3200 |
9 | 1 | 4 | 27.0400 | 9.6100 | 16.1200 |
10 | 14 | 13 | 60.8400 | 34.8100 | 46.0200 |
Total | 62 | 71 | 117.6000 | 112.9000 | 103.8000 |
Mean | 6.200 | 7.100 | SSX | SSY | SXY |
correlation coefficient r= | Sxy/(√Sxx*Syy) = | 0.901 | ||
test statistic: t= | r*(√(n-2)/(1-r2)) | = | 5.869 |
Get Answers For Free
Most questions answered within 1 hours.